This study aimed at investigating the impact of chronic ingestion of sebacic acid (SA), a 10 carbons medium-chain dicarboxylic acid, on glycemic control in a mouse model of type 2 diabetes (db/db mice). Three groups of 15 mice were fed for 6 weeks either a chow diet (Ctrl), or a chow diet supplemented with 1.5% or 15% (SA1.5% and SA15% resp.) energy from SA. Fasting glycemia was measured once a week and HbA1c before and after supplementation. An oral glucose tolerance test (OGTT) was performed at the end of the supplementation. Gene expression was determined by transcriptomic analysis on the liver of the Ctrl and SA15% groups. Results-After 42 days of supplementation, fasting glycemia and HbA1c were ~70% and ~25% lower in the SA15% group compared to other groups showing a beneficial effect of SA on hyperglycemia. During OGTT, blood glucose area under the curve (AUC) was reduced after SA15% compared to other groups. This effect was associated with a tendency for an improved insulin response. In the liver, Pck1 and FBP mRNA were statistically decreased in the SA15% compared to Ctrl suggesting a reduced hepatic glucose output induced by SA. Conclusions-Dietary supplementation of SA largely improves glycemic control in a mouse model of type 2 diabetes. This beneficial effect may be due (1) to a reduced hepatic glucose output resulting from transcriptional down regulation of key gluconeogenesis genes and (2) to an improved glucose induced-insulin secretion.
Six weeks' sebacic acid supplementation improves fasting plasma glucose, HbA1c and glucose tolerance in db/db mice.
Specimen part
View SamplesWe examined global gene expression patterns in response to PGC-1 expression in cells derived from liver or muscle.
Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α.
Specimen part
View SamplesCell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood.
Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.
Specimen part, Cell line
View SamplesSecreted proteins serve pivotal roles in the development of multicellular organisms, acting as structural matrix, extracellular enzymes and signal molecules. In this study we demonstrate, unexpectedly, that PGC-1, a critical transcriptional co-activator of metabolic gene expression, functions to down-regulate expression of diverse genes encoding secreted molecules and extracellular matrix (ECM) components to modulate the secretome. We show that both endogenous and exogenous PGC-1 down-regulate expression of numerous genes encoding secreted molecules. Mechanistically, results obtained using mRNA stability measurements as well as intronic RNA expression analysis are consistent with a transcriptional effect of PGC-1 on expression of genes encoding secreted proteins. Interestingly, PGC-1 requires the central heat shock response regulator HSF1 to affect some of its targets, and both factors co-reside on several target genes encoding secreted molecules in cells. Finally, using a mass spectrometric analysis of secreted proteins, we demonstrate that PGC-1 modulates the secretome of mouse embryonic fibroblasts (MEFs).
Control of Secreted Protein Gene Expression and the Mammalian Secretome by the Metabolic Regulator PGC-1α.
Specimen part
View SamplesThis is the first study to investigate mRNA expression profiling in regard to hepatic I/R and IPO by next-generation RNA-Seq. Our results may provide an experimental basis for elucidating the underlying mechanism of IPO and reveal candidate biomarkers with which to assess hepatic I/R injury Overall design: liver mRNA profiles of sham, I/R and IPO mice were generated by next-generation sequencing, in triplicate, using Illumina HiSeq 4000.
Gene Expression Profiling in Ischemic Postconditioning to Alleviate Mouse Liver Ischemia/Reperfusion Injury.
Specimen part, Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Thymic negative selection is functional in NOD mice.
Sex, Age
View SamplesThe aim of this study was to quantify the impact of NOD genetic vatiation on thymic negative selection transcriptional programs.
Thymic negative selection is functional in NOD mice.
Sex, Age
View SamplesThe aim of this study was to quantify the impact of NOD genetic vatiation on the transcriptional programs induced by the alpha beta-TCR at the DN to DP transition in the BDC2.5 TCR Tg model
Thymic negative selection is functional in NOD mice.
Sex, Age
View SamplesPurpose: To compare the transcriptome of MESP1-mTomato reporter cells at undifferentiated state, cardiac differentiation day 3 and day 5. Methods: total RNA from sorted MESP1+, MESP1- and HESCs (in biological duplicates) was extracted using RNeasy Plus Mini Kit (Qiagen) and treated with RNase free DNase. RNA library was prepared following the instruction of TruSeqâ„¢ RNA Sample Preparation kit (Illumina) and sequenced on Illumina HiSeq 2000. Results: genes differentially expressed in MESP1-mTomato+ and mTomato- cells were identified. Conclusions: the gene expression profile of MESP1-mTomato cells indicates that they are cardiovascular progenitor cells. Overall design: Through RNA-seq of MESP1+, MESP1- and undifferentiated cells, perform bioinformatics analysis to identify differentially expressed genes, then perform functional study.
Homozygous MESP1 knock-in reporter hESCs facilitated cardiovascular cell differentiation and myocardial infarction repair.
No sample metadata fields
View SamplesObjective: To study the physiological role of eosinophils in the GI tract and lung under homeostatic conditions,
The pan-B cell marker CD22 is expressed on gastrointestinal eosinophils and negatively regulates tissue eosinophilia.
Specimen part
View Samples