This SuperSeries is composed of the SubSeries listed below.
Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging.
Age, Specimen part
View SamplesReexpression of microRNAs miR-15a/16-1 in a cell line deficient for these miRs (homozygous deletion of chromosomal region 13q14) results in the downregulation of certain mRNAs.
The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia.
Cell line
View SamplesGene expression profiling of the medial (MGE), lateral (LGE) and caudal (CGE) ganglionic eminence, and cerebral cortex (CTX) at various embryonic stages (E12.5, E14 and E16).
Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision.
Sex, Specimen part
View SamplesExpression in GFP vs. GFP/hTERT transduced CD8 T Lymphocytes from Healty Donors (HD) 1 and 2 at early and late passages. Using CD8+ T lymphocyte clones over-expressing telomerase we investigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesUsing CD8+ T lymphocyte clones over-expressing telomerase weinvestigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone. HD2 was profiled on U133Plus 2.0 and submitted as a separate GEO series.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesUsing CD8+ T lymphocyte clones over-expressing telomerase weinvestigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone. HD1 was profiled on U133A and submitted as a separate GEO series.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
Specimen part
View SamplesRNA polymerase III (pol III) synthesizes short non-coding RNAs, many of which, including tRNAs, Rpph1 RNA, Rn5s rRNA, and Rmrp RNA, are essential for translation. Accordingly, pol III activity is tightly regulated with cell growth and proliferation by factors such as MYC, RB1, TRP53, and MAF1. MAF1 is a repressor of pol III transcription whose activity is controlled by phosphorylation; in particular, it is inactivated through phosphorylation by mTORC1 kinase, a sensor of nutrient availability. Pol III regulation is thus sensitive to environmental cues, yet a diurnal profile of pol III transcription activity is so far lacking. Here we document pol III occupancy of its target genes in mouse liver during the diurnal cycle and show that pol III occupancy rises before the onset of the night, stays high during the night, when mice normally ingest food and when translation is increased, and decreases in daytime. By comparing diurnal pol III occupancy in wild-type mice, arrhythmic mice owing to inactivation of the Arntl gene, mice fed at regular intervals during both night and day, and mice lacking the Maf1 gene, we show that whereas higher pol III occupancy during the night reflects a MAF1-dependent response to feeding, the rise of pol III occupancy before the onset of the night reflects a circadian clock-dependent response. Thus, pol III transcription during the diurnal cycle is regulated both in response to nutrients and by the circadian clock, which allows anticipatory pol III transcription.
Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The thrombopoietin/MPL axis is activated in the Gata1<sup>low</sup> mouse model of myelofibrosis and is associated with a defective RPS14 signature.
Sex
View SamplesMyelofibrosis (MF) is caused by genetic abnormalities involving the thrombopoietin (TPO)/MPL/JAK2 axis. Furthermore MF patients have elevated serum TPO levels. MF is also associated with reduced GATA1 content in MK suggesting that this abnormality represents a phenotypic modifier. In 2014, Dr. Crispino suggested that in MF abnormal TPO signaling induces a ribosomal deficiency hampering GATA1 mRNA translation in MK. Support for MK GATA1 deficiency as phenotypic modifier in MF was provided by the observation that mice carrying the Gata1low mutation reducing Gata1 transcription in MK develop myelofibrosis. Since reduced RBC half-life subject these mice to continuous erythroid stress, we investigated the TPO/Mpl axis in this model. In Gata1low and wild-type mice, TPO mRNA was expressed by bone marrow (BM), spleen and liver. The greatest expression (by 300-fold) was detected in liver. Gata1low livers expressed TPO mRNA levels 6-fold greater than wild-type livers. TPO protein was detected in BM, spleen, liver and peritoneum washes and plasma. The greatest levels where detected in plasma. Gata1low plasma contained TPO levels 2-fold lower than wild-type plasma, but 2-times greater than plasma from bleed wild-type mice and Mplnull mice with similar thrombocytopenia, suggesting that TPO is overproduced in Gata1low mice. JAK2 and STAT5 were easily detected in Gata1low BM bur barely detectable in wild-type BM, suggesting that in the former MPL is prompt to signaling activation. Furthermore, Gata1low LSK expressed levels of Mpl mRNA 3-times greater than wild-type cells but expressed cell-surface levels of MPL 2-times lower than wild-type cells and similar to those on LSK from TPO-treated wild-type mice, suggesting that MPL is down-modulated in Gata1low LSK. The Crispinos hypothesis that in MF activation of TPO/MPL/JAK2 induces a ribosomal deficiency hampering GATA1 mRNA translation and the realization that this axis is activated in Gata1low mice made us question the original hypothesis that reduced content of GATA1 in Gata1low MK results from deletion of lineage-specific enhancers. Microarray analyses indeed identified that Gata1low BM express a discordant ribosome signature including reduced expression of RPS24 and RPS36A, two genes mutated in Diamond Blackfan Anemia, a disease characterized by inefficient GATA1 mRNA translation. Electron microscopy identified that the cytoplasm of Gata1low MK contained poorly developed endoplasmic reticulum with rare polysomes. In conclusion, these results validate the Gata1low model as a MF model by indicating that these mice express an activated TPO/MPL axis and an abnormal ribosomal signature which may reduce efficiency of Gata1 mRNA translation.
The thrombopoietin/MPL axis is activated in the Gata1<sup>low</sup> mouse model of myelofibrosis and is associated with a defective RPS14 signature.
Sex
View Samples