Effect of high light on directly exposed and shaded, distal Arabidopsis leaf tissue
Systemic and intracellular responses to photooxidative stress in Arabidopsis.
No sample metadata fields
View SamplesMetabolic production of acetyl-CoA has been linked to histone acetylation and gene regulation, however the mechanisms are largely unknown. We show that the metabolic enzyme acetyl-CoA synthetase 2 (ACSS2) is a critical and direct regulator of histone acetylation in neurons and of long-term mammalian memory. We observe increased nuclear ACSS2 in differentiating neurons in vitro. Genome-wide, ACSS2 binding corresponds with increased histone acetylation and gene expression of key neuronal genes. These data indicate that ACSS2 functions as a chromatin-bound co-activator to increase local concentrations of acetyl-CoA and to locally promote histone acetylation for transcription of neuron-specific genes. Remarkably, in vivo attenuation of hippocampal ACSS2 expression in adult mice impairs long-term spatial memory, a cognitive process reliant on histone acetylation. ACSS2 reduction in hippocampus also leads to a defect in upregulation of key neuronal genes involved in memory. These results reveal a unique connection between cellular metabolism and neural plasticity, and establish a link between generation of acetyl-CoA and neuronal chromatin regulation. Overall design: Global survey of gene expression in CAD cells and differentiated CAD neurons following lentiviral knockdown of ACSS2 or ATP citrate lyase (ACL) (and control = scramble hairpin); survey of hippocampal gene expression changes associated with retrieval of fear memory, after ACSS2-AAV knockdown or in EGFP-AAV control (comparison of 0h vs. 1h post-memory retrieval).
Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory.
Specimen part, Cell line, Treatment, Subject, Time
View SamplesHematopoietic stem cell (HSC) are regulated by their niche, which limits activation of HSCs, to ensure their maintenance and self-renewal.
Stroma-Derived Connective Tissue Growth Factor Maintains Cell Cycle Progression and Repopulation Activity of Hematopoietic Stem Cells In Vitro.
Cell line
View SamplesIllumina HiSeq2000 technology was used to generate mRNA profiles from the ectomycorrhizal fungi Laccaria bicolor colonizing roots of Populus trichocarpa. Samples were taken after 3 months of contact in order to identify mycorrhiza-regulated transcripts. 100bp reads were generated and aligned to the Populus trichocarpa (http://www.phytozome.net/poplar.php) reference genome. Overall design: mRNA profiles from Populus trichocarpa roots colonized by Laccaria bicolor for three months as well as from control roots were generated by using one lane of 1X100bp Illumina HiSeq2000 sequencing per sample.
Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis.
Specimen part, Cell line, Subject
View Samples