This SuperSeries is composed of the SubSeries listed below.
Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells.
Specimen part, Cell line, Treatment, Time
View SamplesGene expression profiles of E14 embryonic stem cells (ESCs) before and after treatment with low levels of the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and sodium butyrate (NaBu).
Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells.
Specimen part, Cell line, Treatment
View SamplesGene expression profiles of E14 embryonic stem cells (ESCs) before and after treatment with low levels of the histone deacetylase (HDAC) inhibitor valproic acid (VPA).
Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells.
Specimen part, Cell line, Treatment
View SamplesThe effect of HMGN1 protein on gene expression of mouse ESC, NP and Neurons were investigated by comparing the transcriptome between Hmgn1+/+ and Hmgn1 -/- cells.
HMGN1 modulates nucleosome occupancy and DNase I hypersensitivity at the CpG island promoters of embryonic stem cells.
Specimen part
View SamplesThe global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can act both as an enhancer and as a silencer of splicing, and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by Heterochromatin protein 1 (HP1), which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene, and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this gene’s alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylation''s significant global influence on mRNA splicing, and identify a specific mechanism of splicing regulation mediated by HP1. Overall design: BS-seq on WT mouse ES cells (2 replicates), MNase-seq on WT and TKO cells (3 replicates), mRNA-seq on WT and TKO cells as well as HP1 knock-down cells (2 replicates for each sample)
HP1 is involved in regulating the global impact of DNA methylation on alternative splicing.
No sample metadata fields
View SamplesWe used microarrays to study the effect of Chd1 loss of function in mouse ES cells.
Chd1 regulates open chromatin and pluripotency of embryonic stem cells.
Cell line
View SamplesWe used microarrays to identify the gene expression changes after SET knockdown in ESCs and 4 day RA differentiated ESCs
Alternative SET/TAFI Promoters Regulate Embryonic Stem Cell Differentiation.
Specimen part
View SamplesWe used microarrays to identify the gene expression changes after Smarcd1 knockdown in ESCs and 4 day RA differentiated ESCs
Differential association of chromatin proteins identifies BAF60a/SMARCD1 as a regulator of embryonic stem cell differentiation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells.
Specimen part, Cell line
View SamplesWe used microarrays to identify the gene expression changes in Cbx1-/- (HP1beta) knockout embryonic stem cells (ESCs) and Cbx5-/- (HP1alpha) knockout ESCs compared to WT ESCs and in embryoid bodies (EBs) differentiated from those three ESC types.
Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells.
Specimen part, Cell line
View Samples