The essential histone variant H2A.Z affects various DNA-based biological processes by so far not well understood mechanisms. Using a comprehensive label-free quantitative mass spectrometry-based approach we identified the human H2A.Z nucleosome interactome providing further insights into H2A.Z’s regulatory functions. Besides histone modification writer, eraser and reader complexes we identified PWWP2A as a novel H2A.Z-nucleosome binder. PWWP2A binds unprecedented strong to chromatin through a concerted multivalent binding mode. Two internal protein regions separately allow H2A.Z-specificity and nucleosome interaction, whereas the PWWP domain mediates direct DNA binding. PWWP2A is found at euchromatic regions where it preferable binds to the H2A.Z-nucleosome-containing transcriptional start sites of transcribed genes. Cellular depletion of PWWP2A results in impaired proliferation caused by a mitotic delay likely due to deregulation of involved target genes. According with the strong cellular phenotype, knockdown of frog PWWP2A leads to severe developmental cranial facial defects arising from neural crest cell differentiation and migration problems. Together, this study identifies PWWP2A as an H2A.Z-specific multivalent chromatin binder and provides a novel link between H2A.Z, chromosome segregation and organ development. Overall design: RNASeq of HeLa cells treated with control or PWWP siRNA
Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation.
No sample metadata fields
View SamplesWe report the application of Illumina small RNA sequencing to normal human skin, as well as uninvolved and involved psoriatic skin. By obtaining over 600 million qualified reads from 20 healthy controls and 47 psoriasis biopsies (uninvolved/involved), we have generated a complete small RNA profile in normal and diseased human skin, with particular emphasis on miRNAs. We report the discovery of 284 putative novel miRNAs as well as 98 differentially expressed miRNAs in psoriatic skin. Overall design: miRNA discovery and expression profiling in 67 normal and psoriatic human skin biopsies
Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome.
Specimen part, Disease, Disease stage, Subject
View SamplesWe obtained snap-frozen tissue samples from 20 colorectal cancer (CRC) patients with stage III disease who had undergone curative resection. The expression profiles were determined using Affymetrix Human Genome U133Plus 2.0 arrays.
ERK2-Dependent Phosphorylation of CSN6 Is Critical in Colorectal Cancer Development.
No sample metadata fields
View SamplesWe have generated iPSCs from monosomy X (Turner Syndrome), trisomy 8 (Warkany Syndrome 2), trisomy 13 (Patau Syndrome) and partial trisomy 11;22 (Emanuel Syndrome), using either skin fibroblasts from affected individuals or amniocytes from antenatal diagnostic tests. These cell lines stably maintain the karyotype of the donors and behave like embryonic stem cells (ESCs) in all tested assays. Turner Syndrome iPSCs were used for further studies including global gene expression analysis and tissue-specific directed differentiation. Multiple clones displayed lower levels of the pseudoautosomal genes ASMTL and PPP2R3B than the controls. Moreover, they could be transformed into neural-like, hepatocyte-like and heart-like cells but displayed insufficient up-regulation of the pseudoautosomal placental gene CSF2RA during embryoid body (EB) formation. These data support that abnormal organogenesis and early lethality in Turner Syndrome are not caused by a tissue-specific differentiation blockade but rather involves other abnormalities including impaired placentation.
Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes.
Cell line
View SamplesNeuroblastoma is an embryonal tumor arising from the neural crest. It can be mimicked in mice by neural crest-specific overepxression of oncogenes such as MYCN or mutated ALK.
Targeted expression of mutated ALK induces neuroblastoma in transgenic mice.
Specimen part
View SamplesBone morphogenic proteins (BMPs) function in virtually all tissues with cell-type specific outcomes. Since there are a relatively small number of BMP receptors this exquisite signaling specificity requires additional molecules to regulate the output of this pathway. We demonstrated that the receptor tyrosine kinase MuSK that is selectively expressed in muscle and plays a critical role in synapse formation and maintenance binds to BMP4 and related BMPs. Since BMPs regulate the transcription of a set of genes, we performed microarrays for wild-type and MuSK null muscle cells to test if MuSK regulates BMP responses in muscle cells.
MuSK is a BMP co-receptor that shapes BMP responses and calcium signaling in muscle cells.
No sample metadata fields
View SamplesProprioception relies on two main classes of proprioceptive sensory neurons (pSNs). These neurons innervate two distinct peripheral receptors in muscle, muscle spindles (MSs) or Golgi tendon organs (GTOs), and synapse onto different sets of spinal targets, but the molecular basis of their distinct pSN subtype identity remains unknown.
The PDZ-domain protein Whirlin facilitates mechanosensory signaling in mammalian proprioceptors.
Sex, Specimen part
View SamplesHuman aging is associated with loss of function and regenerative capacity. Human bone marrow derived mesenchymal stromal cells (hMSCs) are involved in tissue regeneration, evidenced by their capacity to differentiate into several lineages and therefore are considered the gold standard for cell-based regeneration therapy. Tissue maintenance and regeneration is dependent on stem cells and declines with age and aging is thought to influence therapeutic efficacy, therefore, more insight in the process of aging of hMSCs is of high interest. We, therefore, hypothesized that hMSCs might reflect signs of aging. In order to find markers for donor age, early passage hMSCs were isolated from bone marrow of 61 donors, with ages varying from 17-84, and clinical parameters, in vitro characteristics and microarray analysis were assessed. Although clinical parameters and in vitro performance did not yield reliable markers for aging since large donor variations were present, genome-wide microarray analysis resulted in a considerable list of genes correlating with human age. By comparing the transcriptional profile of aging in human with the one from rat, we discovered follistatin as a common marker for aging in both species. The gene signature presented here could be a useful tool for drug testing to rejuvenate hMSCs or for the selection of more potent, hMSCs for cell-based therapy.
A mesenchymal stromal cell gene signature for donor age.
Sex, Age
View SamplesSpinal muscular atrophy (SMA) is a neurodegenerative disease which exhibits selective motor neuron death caused by a ubiquitous deficiency of the survival motor neuron (SMN) protein. It remains unclear how the ubiquitous reduction of SMN lead to death in selective motor neuron pools. Medial motor neuron columns (MMC) are vulnerable, whereas lateral motor columns (LMC) are resistant to motor neuron death in SMA. Here we performed microarray and pathway analysis comparing cholera toxin subunit B (CTb) labeled vulnerable MMC and resistant LMC of pre-symptomatic SMA with corresponding motor neuron columns of control mice to identify pathways involved in selective motor neuron death in SMA. WT is FVB. SMN is Delta7 (SMN7;SMN2;Smn-) on a FVB background.
Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy.
Specimen part
View SamplesSpinal inhibitory interneurons play crucial roles in shaping motor output, but the molecular heterogeneity contained within cardinal spinal interneuron populations is unclear.
Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits.
Specimen part
View Samples