DREAM (downstream regulatory element antagonist modulator) is a Ca2+-binding protein that binds DNA and represses transcription in a Ca2+-dependent manner. Previous studies have shown a role for DREAM in cerebellar function regulating the expression of the sodium/calcium exchanger3 (NCX3) in cerebellar granules to control Ca2+ homeostasis and survival of these neurons. To achieve a more global view of the genes regulated by DREAM in the cerebellum, we performed a genome-wide analysis in transgenic cerebellum expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Our results indicate that DREAM is a major transcription factor in the cerebellum that regulates genes important for cerebellar development.
Reduced Mid1 Expression and Delayed Neuromotor Development in daDREAM Transgenic Mice.
Specimen part
View SamplesExpression of DREAM in dorsal root ganglia and spinal cord is related to endogenous control mechanisms of acute and chronic pain. In primary sensory trigeminal neurons high levels of endogenous DREAM protein are preferentially localized in the nucleus, suggesting a major transcriptional role. Here, we show that DREAM participates in the control of trigeminal pain perception through the regulation of prodynorphin and BDNF. Furthermore, genome-wide analysis of trigeminal neurons in daDREAM transgenic mice revealed that cathepsin L (CTSL) and the monoglyceride lipase (MGLL) are new DREAM downstream targets and have a role in the regulation of trigeminal nociception.
Transcriptional repressor DREAM regulates trigeminal noxious perception.
Specimen part
View SamplesDrosophila males double transcription of their single X chromosome to equalize X-linked gene expression with females, which carry two X chromosomes. Increased transcription requires the Male-Specific Lethal (MSL) complex. One of the primary functions of the MSL complex is thought to be enrichment of H4Ac16 on the male X chromosome, a modification linked to elevated transcription. The roX1 and roX2 RNAs are essential but redundant components of the MSL complex. Simultaneous removal of both roX RNAs reduces MSL X-localization and leads to ectopic binding of these proteins at autosomal sites and to the chromocenter. Some H4Ac16 accumulates at these ectopic sites in roX1- roX2- males, suggesting the possibility of increased expression. The global effect of roX mutations on gene expression was measured by microarray analysis. We found that expression of the X chromosome was decreased by 26% in roX1- roX2- male larvae, supporting the involvement of roX RNAs in the up-regulation of X-linked genes. This finding is broadly comparable to reports of reduced X chromosome expression following msl2 RNAi knockdown in S2 cells. In spite of strong MSL binding and H4Ac16 accumulation at autosomal sites in roX1- roX2- males, enhanced gene expression could not be detected at these sites by microarray analysis or reverse northern blotting. Thus, failure to compensate X-linked genes, rather than inappropriate up-regulation of autosomal genes at ectopic sites of MSL binding, appears to cause male lethality upon loss of roX RNAs.
roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males.
Sex
View SamplesDeregulated intracellular Ca2+ homeostasis underlies synaptic dysfunction and is a common feature in neurodegenerative processes, including Huntington's disease (HD). DREAM/calsenilin/KChIP-3 is a multifunctional Ca2+ binding protein that controls the expression level and/or the activity of several proteins related to Ca2+ homeostasis, neuronal excitability and neuronal survival. We found that expression of endogenous DREAM (DRE antagonist modulator) is reduced in the striatum of R6 mice, in STHdh-Q111/111 knock in striatal neurons and in HD patients. DREAM down regulation in R6 striatum occurs early after birth, well before the onset of motor coordination impairment, and could be part of an endogenous mechanism of neuroprotection, since i) R6/2 mice hemizygous for the DREAM gene (R6/2xDREAM+/-) showed delayed onset of locomotor impairment and prolonged lifespan, ii) motor impairment after chronic administration of 3-NPA was reduced in DREAM knockout mice and enhanced in daDREAM transgenic mice and, iii) lentiviral-mediated DREAM expression in STHdh-Q111/111 knock in cells sensitizes them to oxidative stress. Transcriptomic analysis showed that changes in gene expression in R6/2 striatum were notably reduced in R6/2xDREAM+/- striatum. Chronic administration of repaglinide, a molecule able to bind to DREAM in vitro and to accelerate its clearance in vivo, delayed the onset of motor dysfunction, reduced striatal loss and prolonged the lifespan in R6/2 mice. Furthermore, exposure to repaglinide protected STHdh-Q111/111 knock in striatal neurons sensitized to oxidative stress by lentiviral-mediated DREAM overexpression. Thus, genetic and pharmacological evidences disclose a role for DREAM silencing in early neuroprotective mechanisms in HD.
Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.
Specimen part
View SamplesChanges in nuclear Ca2+ homeostasis activate specific gene expression programs and are central to the acquisition and the plastic storage of memories. DREAM /KChIP proteins form heterotetramers that bind DNA and repress transcription in a Ca2+-dependent manner. Single ablation of one member of the DREAM/KChIP family may result in a mild or the absence of phenotype due to partial gene compensation. To study the function of DREAM/KChIP proteins in the brain, we used transgenic mice expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). We show that daDREAM controls the expression of several activity-dependent transcription factors including Npas4, Nr4a1, Mef2C, JunB and c-Fos, as well as the chromatin modifying enzyme Mbd4 and proteins related to actin polymerization like Arc and gelsolin. Thus, directly or through these targets, expression of daDREAM in the forebrain resulted in a complex phenotype characterized by i) impaired learning and memory, ii) loss of recurrent inhibition and enhanced LTP in the dentate gyrus without affecting Kv4-mediated potassium currents, and iii) modified spine density in DG granule neurons. Our results propose DREAM as a master-switch transcription factor regulating several activity-dependent gene expression programs to control synaptic plasticity, learning and memory.
DREAM controls the on/off switch of specific activity-dependent transcription pathways.
Specimen part
View SamplesroX RNAs are involved in the chromosome-wide gene regulation that occurs during dosage compensation in Drosophila. Dosage compensation equalizes expression of X-linked and autosomal genes. Drosophila males increase transcription two-fold from their single X chromosome. This is mediated by the MSL complex, which is composed of the male-specific lethal (MSL) proteins and two noncoding roX RNAs, roX1 and roX2. Upon elimination of both roX transcripts, a global decrease of X-linked gene expression is observed in males. Expression of the genes on the entire 4th chromosome also decreased in the absence of both roX transcripts. roX1 RNA also presents in females in the early stages. To investigate the effect of loss of roX transcripts on gene expression in females, gene expression was analyzed by microarrays in roX1-roX2- female flies. To eliminate inconsistency caused by differences in genetic background, expression of roX1-roX2- females with females of virtually identical genetic background but carrying the [hsp83-roX1+] transgene were compared. Expression of any chromosome did not change in roX1-roX2- females. It was concluded that roX RNAs only effect in males .
Coordinated regulation of heterochromatic genes in Drosophila melanogaster males.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms.
Cell line, Treatment
View SamplesHCT116 microarray done 12 hours after treatment with DMSO (control) or Nutlin
Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms.
Cell line, Treatment
View SamplesWe performed mRNA expression profiling of lung tumors from C/L858R, C/T790M, and C/L+T mice and from corresponding normal lung tissue.
Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer.
No sample metadata fields
View SamplesTo investigate the mechanisms of PCa progression, we performed expression profiling of human prostate cancer and benign tissues.
Integration of tissue metabolomics, transcriptomics and immunohistochemistry reveals ERG- and gleason score-specific metabolomic alterations in prostate cancer.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View Samples