Resveratrol, a natural phytoestrogen found in red wine and a variety of plants, is reported to have protective effects against lung cancer, however there is very little work directed towards the understanding of the mechanism of action of resveratrol in lung cancer. In this study we used an experimental approach to understand the biological activity and molecular mechanisms of resveratrol in A549 lung cancer cells. Gene expression profiles were compiled using an oligonucleotide microarray to determine altered expression levels in resveratrol treated cells.
Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses.
No sample metadata fields
View SamplesThe purpose of this experiment is to understand which transcripts are differentially expressed following exposure to TCDD.
TCDD inhibits heart regeneration in adult zebrafish.
Treatment
View SamplesThe goal of this study was to identify signaling molecules downstream of CXCR4 in breast cancer cells. For this purpose, we sorted CXCR4-positive and CXCR4-negative cells from MDA-MB-231 breast cancer cell line by flow cytometry and performed microarrays analysis.
ITF2 is a target of CXCR4 in MDA-MB-231 breast cancer cells and is associated with reduced survival in estrogen receptor-negative breast cancer.
Specimen part, Cell line, Treatment
View SamplesGene expression in E coli W3110 strains with either ybaO over-expression (W3110/pcutR) or ybaO deletion (W3110/cutR) were measured with cysteine challenge.
Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli.
No sample metadata fields
View SamplesTemporal changes in the embryo transcriptome between the blastocyst stage (Day 7) and initiation of elongation (Day 13) differ between in vivo- and in vitro-derived embryos and are reflective of subsequent developmental fate.
Transcriptome changes at the initiation of elongation in the bovine conceptus.
Specimen part
View SamplesThe innate inflammatory response must be tightly regulated to ensure effective immune protection while avoiding inflammation-related pathologies. The transcription factor NF-kB is a critical mediator of the inflammatory response, and its dysregulation has been associated with immune related malignancies. We herein show that miR-155, miR-146a and NF-kB form a regulatory network that tunes the macrophage inflammatory response in mice. We show that elevated miR-155 expression potentiates NF-kB activity in miR-146a deficient mice, thus leading to an overactive acute inflammatory response and chronic inflammation. Enforced miR-155 expression overrides miR-146a-mediated repression of NF-kB activation, thus emphasizing that miR-155 plays a dominant, downstream role in promoting inflammation. We further show that miR-155 deficient macrophages exhibit a suboptimal inflammatory response when exposed to low levels of inflammatory stimuli. Importantly, we demonstrate a temporal asymmetry between miR-155 and miR-146a expression during macrophage activation, which forms a combined positive and negative feedback network on NF-kB activity. This miRNA based regulatory network enables a robust and time-limited inflammatory response essential for functional immunity. Overall design: RNA-seq of wild-type and microRNA-146/155 knock-out bone marrow derived macrophages after LPS stimulation
An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses.
Specimen part, Cell line, Subject
View SamplesThere is a continuing need for driver strains to enable cell type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (http://enhnacertrap.bio.brandeis.edu). Overall design: Examination of 6 cortical mouse neuronal cell types. 5 of which are in layer 6 in 3 different cortical regions.
A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types.
Sex, Cell line, Subject
View SamplesZinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of human ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in tumour cell lines. The hypothesis tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two tumour cell lines (H460 and HCT116). All four lines had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 213% for the parental line to 6.40.8% (p=0.002) and 4.30.8% (p=0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no effect on glycolysis as measured by glucose consumption or lactate formation under oxic or anoxic conditions, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis.
Expression and role in glycolysis of human ADP-dependent glucokinase.
Cell line
View SamplesIn cattle, almost all fully grown vesicle stage oocytes (GV) have the ability to resume meisos, develop to Metaphase II stage (MII), support fertilization and progress through the early embryonic cycles in vitro. Yet without intensive selection, the majority fail to develop to the blastocyst stage.
Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation.
Specimen part
View SamplesMicroRNAs have emerged as key regulators of B cell fate decisions and immune function. Deregulation of several microRNAs in B cells leads to the development of autoimmune disease and cancer in mice. We demonstrate that the microRNA-212/132 cluster (miR-212/132) is induced in B cells in response to B cell receptor signaling. Enforced expression of miR-132 results in a block in early B cell development at the pre-pro-B cell to pro-B cell transition and induces apoptosis in primary bone marrow B cells. Importantly, loss of miR-212/132 results in increased B cell output under non-homeostatic conditions. We find that miR-212/132 regulates B lymphopoiesis by targeting the transcription factor SOX4. Co-expression of SOX4 with miR-132 rescues the defect in B cell development from over-expression of miR-132 alone. In addition, we show that the expression of miR-132 in cells that are prone to spontaneous B cell cancers can have a protective effect on cancer development. We have thus uncovered a novel regulator of B cell lineage specification that may potential applications in B cell cancer therapy Overall design: RNA-seq of wild-type and microRNA-212/132 knock-out B-cells after IgM stimulation
The microRNA-212/132 cluster regulates B cell development by targeting Sox4.
No sample metadata fields
View Samples