Human embryonic stem cells (hESCs) were specified as ventral telencephalic neuroectoderm (day 4) and then into medial ganglionic emininence (MGE)-like progenitors (day 15) and were subsequently differentiated into cortical interneuron (cIN)-like cells (day 25-35), by modification of previously published protocols. RNA-seq analysis at days 0, 4, 15, 25, and 35 defined transcriptome signatures for MGE and cIN cell identity. Further integration of these gene expression signatures with ChIP-seq for the NKX2-1 transcription factor in MGE-like progenitors defined NKX2-1 putative direct targets, including genes involved in both MGE specification and in several aspects of later cIN differentiation (migration, synaptic function). Among the NKX2-1 direct targets with MGE and cIN enriched expression was CHD2, a chromatin remodeling protein. Since CHD2 haploinsufficiency can cause epilepsy and/or autism, which can involve altered cIN development or function, we evaluated CHD2 requirements in these processes. Transcriptome changes were evaluated in CHD2 knockdown MGE-like progenitors at day 15, revealing diminished expression of genes involved in MGE specification and cIN differentiation including channel and synaptic genes implicated in epilepsy, while later cIN electrophysiological properties were also altered. We defined some shared cis-regulatory elements bound by both NKX2-1 and CHD2 and characterized their ability to cooperatively regulate cIN gene transcription through these elements. We used these data to construct regulatory networks underlying MGE specification and cIN differentiation and to define requirements for CHD2 and its ability to cofunction with NKX2-1 in this process. Overall design: To comprehensively define changes in gene expression profiles that accompany cortical interneuron (cIN) specification and differentiation process, we have performed RNA sequencing analysis at days 0 (hESCs), 4, 15, 25, and 35. To understand the gene regulatory networks through which NKX2-1 may directly control these processes, we defined its direct targets by performing NKX2-1 ChIP-seq in day 15 MGE-like cells. Chromatin enrichment for NKX2-1 binding was compared to input and IgG controls. To define the CHD2-dependent gene expression programs during cIN specification, we used CHD2 knockdown (KD) to conduct RNA-seq analysis in d15 CHD2 KD MGE-like cells.
Regulatory networks specifying cortical interneurons from human embryonic stem cells reveal roles for CHD2 in interneuron development.
No sample metadata fields
View SamplesHuman skin-derived precursor cells (hSKP) are a stem cell population that represents key candidates for cell based-therapy. Inflammation, however, is often present in situations where cellular replacement therapy is required. These inflammatory conditions, and more specifically the presence of the cytokine interferon (IFN)-, might result in an increase of MHC class II antigens in hSKP-derived grafts and facilitate their rejection.
Human skin-derived precursor cells are poorly immunogenic and modulate the allogeneic immune response.
Sex, Age, Specimen part
View SamplesGene expression profiling of several wildtype strains of zebrafish embryos. The samples were pooled from several developmental stages ranging from 2 to 7 days post fertilization. This breadth of sampling gives a broad idea of genes expressed during early development and SNPs associated with wildtype strains.
RNA-seq-based mapping and candidate identification of mutations from forward genetic screens.
No sample metadata fields
View SamplesHigh-throughput mapping of cellular differentiation hierarchies from single-cell data promises to empower systematic interrogations of vertebrate development and disease. Here, we applied single-cell RNA sequencing to >92,000 cells from zebrafish embryos during the first day of development. Using a graph-based approach, we mapped a cell state landscape that describes axis patterning, germ layer formation, and organogenesis. We tested how clonally related cells traverse this landscape by developing a transposon-based barcoding approach (“TracerSeq”) for reconstructing single-cell lineage histories. Clonally related cells were often restricted by the state landscape, including a case in which two independent lineages converge on similar fates. Cell fates remained restricted to this landscape in chordin-deficient embryos. We provide web-based resources for further analysis of the single-cell data. Overall design: Single-cell mRNA sequencing of zebrafish embryonic cells. Samples1-7: Single cell libraries from untreated embryos (4-24 hours post-fertilization). Samples8-12: Single cell libraries from embryos injected with TracerSeq lineage cassette at the 1-cell stage. Samples13-18: Single cell libraries from embryos injected with sgRNA + Cas9 at the 1-cell stage.
Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo.
Cell line, Treatment, Subject
View SamplesIn chick basilar papilla, hair cells can be regenerated after gentamicin treatment. To identify genes and pathways involved in this process, we performed microarray analysis on the basilar papilla 0, 48 and 72 hours after gentamicin.
Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions.
Sex, Age, Specimen part, Treatment, Subject
View SamplesEnvironmental stimuli are known to contribute to psoriasis pathogenesis and that of other autoimmune diseases, but the mechanism is unknown. Here we show that the aryl hydrocarbon receptor (AhR), a transcription factor that senses environmental stimuli, modulates pathology in psoriasis. AhR-activating ligands reduced inflammation in the lesional skin of psoriasis patients, whereas AhR antagonists upregulated inflammation. Similarly, AhR signaling via the endogenous FICZ ligand reduced the inflammatory response in the imiquimod-induced model of psoriasis and AhR deficient mice exhibited a substantial exacerbation of the disease, compared to AhR sufficient controls. Non-haematopoietic cells, in particular keratinocytes, were responsible for this hyper-inflammatory response, which involved increased reactivity to IL-1beta and upregulation of AP-1 family members of transcription factors. Thus, our data suggest a critical role for AhR in the regulation of inflammatory responses and open the possibility for novel therapeutic strategies in chronic inflammatory disorders. Overall design: Total RNA obtained from skin explants taken from psoriatic patients or healthy donors cultured in the presence of AhR agonist or antagonist
Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions.
No sample metadata fields
View SamplesEnvironmental stimuli are known to contribute to psoriasis pathogenesis and that of other autoimmune diseases, but the mechanism is unknown. Here we show that the aryl hydrocarbon receptor (AhR), a transcription factor that senses environmental stimuli, modulates pathology in psoriasis. AhR-activating ligands reduced inflammation in the lesional skin of psoriasis patients, whereas AhR antagonists upregulated inflammation. Similarly, AhR signaling via the endogenous FICZ ligand reduced the inflammatory response in the imiquimod-induced model of psoriasis and AhR deficient mice exhibited a substantial exacerbation of the disease, compared to AhR sufficient controls. Non-haematopoietic cells, in particular keratinocytes, were responsible for this hyper-inflammatory response, which involved increased reactivity to IL-1beta and upregulation of AP-1 family members of transcription factors. Thus, our data suggest a critical role for AhR in the regulation of inflammatory responses and open the possibility for novel therapeutic strategies in chronic inflammatory disorders.
Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions.
Specimen part
View SamplesDifferential gene expression was analyzed for FACS sorted Math1::Cre; ROSA-tdTomato from hand dissected cochlear nuclei of wild type and Hoxa2/Hoxb2 mutant mice Overall design: In order to investigate the role of Hoxa2 and Hoxb2 transcription factors in a subset of cells of the cochlear nucleus, we generated double conditional knock-out by crossing the deleter line Math1::Cre crossed with Rosa tdTomato; Hoxa2fl/fl; Hoxb2fl/fl and Rosa tdTomato wild type background. FACS sorted cells from hand dissected cochlear nuclei were than processed and RNA-seq performed (see extract protocol and library construction protocol).
Hox2 Genes Are Required for Tonotopic Map Precision and Sound Discrimination in the Mouse Auditory Brainstem.
No sample metadata fields
View SamplesOxidative stress as a result of cigarette smoking is an important etiological factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), a chronic steroid-insensitive inflammatory disease of the airways. The activity of the transcriptional co-repressor Histone deacetylase-2 (HDAC2) is dramatically reduced in COPD and cells exposed to oxidative stress or cigarette smoke. Moreover, curcumin (diferuloylmethane), a dietary polyphenol, at concentrations upto 1uM specifically restores cigarette smoke extract (CSE)- or oxidative stress- impaired HDAC2 activity. The aim of this study was to therefore identify any links through those gene sets that are affected by oxidative stress and subsequent treatment with curcumin in order to determine whether or not this could explain the impact of curcumin on restoration of oxidant impaired HDAC2 transcriptional co-repressor activity.
Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2.
No sample metadata fields
View Samples