Splenic marginal zone lymphoma (SMZL) is an indolent B-cell lymphoproliferative disorder characterised by 7q32 deletion, but the target genes of this deletion remain unknown. In order to elucidate the genetic target of this deletion, we performed an integrative analysis of the genetic, epigenetic, transcriptomic and miRNomic data. High resolution array comparative genomic hybridization of 56 cases of SMZL delineated a minimally deleted region (2.8Mb) at 7q32, but showed no evidence of any cryptic homozygous deletion or recurrent breakpoint in this region. Integrative transcriptomic analysis confirmed significant under-expression of a number of genes in this region in cases of SMZL with deletion, several of which showed hypermethylation. In addition, a cluster of 8 miRNA in this region showed under-expression in cases with the deletion, and three (miR-182/96/183) were also significantly under-expressed (P <0.05) in SMZL relative to other lymphomas. Genomic sequencing of these miRNA and IRF5, a strong candidate gene, did not show any evidence of somatic mutation in SMZL.
An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma.
Specimen part, Disease
View SamplesSplenic marginal zone lymphoma (SMZL) is an indolent B-cell lymphoproliferative disorder characterised by 7q32 deletion, but the target genes of this deletion remain unknown. In order to elucidate the genetic target of this deletion, we performed an integrative analysis of the genetic, epigenetic, transcriptomic and miRNomic data. High resolution array comparative genomic hybridization of 56 cases of SMZL delineated a minimally deleted region (2.8Mb) at 7q32, but showed no evidence of any cryptic homozygous deletion or recurrent breakpoint in this region. Integrative transcriptomic analysis confirmed significant under-expression of a number of genes in this region in cases of SMZL with deletion, several of which showed hypermethylation. In addition, a cluster of 8 miRNA in this region showed under-expression in cases with the deletion, and three (miR-182/96/183) were also significantly under-expressed (P <0.05) in SMZL relative to other lymphomas. Genomic sequencing of these miRNA and IRF5, a strong candidate gene, did not show any evidence of somatic mutation in SMZL.
An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma.
No sample metadata fields
View SamplesGlobal miRNA expression profiling of human malignancies is gaining popularity in both basic and clinically driven research. But to date, the majority of such analyses have used microarrays and quantitative real-time PCR. With the introduction of digital count technologies, such as next-generation sequencing (NGS) and the NanoString nCounter System, we have at our disposal, many more options. To make effective use of these different platforms, the strengths and pitfalls of several miRNA profiling technologies were assessed, including a microarray platform, NGS technologies and the NanoString nCounter System. These results were compared to gold-standard quantitative real-time PCR. Overall design: Comparison of non-small cell lung cancer cell lines grown in vitro (n = 5) and in vivo (n = 5) as xenograft models.
Robust global microRNA expression profiling using next-generation sequencing technologies.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View SamplesAttempts at modeling chromosomal translocations involving MALT1 gene, hallmarks of human mucosa-associated lymphoid tissue (MALT) lymphoma, have failed to reproduce the disease in mice. Here we describe a transgenic model in which MALT1 expression was targeted to mouse hematopoietic stem/progenitor cells. In Sca1-MALT1 mice, MALT1 deregulation activated the NF-kappaB pathway in Sca1+ cells, promoting selective B-cell differentiation and mature lymphocyte accumulation in extranodal tissues, progressively leading to the development of clonal B-cell lymphomas. These tumors recapitulated the histopathological features of human MALT lymphomas, presenting typical lymphoepithelial lesions and plasmacytic differentiation. Transcriptional profiling of Sca1-MALT1 murine lymphomas revealed overlapping molecular signatures with human MALT lymphomas, including MALT1-mediated NF-kappaB activation, pro-inflammatory signaling and XBP1-induced plasmacytic differentiation. Moreover, murine Malt1 showed proteolytic activity by cleaving Bcl10 in Sca1-MALT1 lymphomas. Our novel technological approach has allowed modeling human MALT lymphoma in mice, which represent unique tools study MALT lymphoma biology and evaluate anti-MALT1 therapies.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View SamplesComparison of gene expression profiling analysis of bone marrow isolated CD34+ cells from patients with MALT lymphoma vs. healthy individuals revealed a large number of differentially expressed genes that included NF-kB target genes, genes involved in inflamatory signalling and immunoglobulin genes, suggesting an early lymphoid B-cell priming.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease, Disease stage
View SamplesAttempts at modeling chromosomal translocations involving MALT1 gene, hallmarks of human mucosa-associated lymphoid tissue (MALT) lymphoma, have failed to reproduce the disease in mice. Here we describe a transgenic model in which MALT1 expression was targeted to mouse hematopoietic stem/progenitor cells. In Sca1-MALT1 mice, MALT1 deregulation activated the NF-kappaB pathway in Sca1+ cells, promoting selective B-cell differentiation and mature lymphocyte accumulation in extranodal tissues, progressively leading to the development of clonal B-cell lymphomas. These tumors recapitulated the histopathological features of human MALT lymphomas, presenting typical lymphoepithelial lesions and plasmacytic differentiation. Transcriptional profiling of Sca1-MALT1 murine lymphomas revealed overlapping molecular signatures with human MALT lymphomas, including MALT1-mediated NFkappaB activation, pro-inflammatory signaling and XBP1-induced plasmacytic differentiation. Moreover, murine Malt1 showed proteolytic activity by cleaving Bcl10 in Sca1-MALT1 lymphomas. Our novel technological approach has allowed modeling human MALT lymphoma in mice, which represent unique tools study MALT lymphoma biology and evaluate anti-MALT1 therapies.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View SamplesWe have carried out whole-genome expression profiling of whole blood from obese subjects, defined as obese diet-sensitive and obese diet-resistant, and well matched lean individuals. The diet-sensitive or diet-resistant status refers to the different rates of weight loss observed in the two groups on a low-calorie diet regimen. Bioinformatic analysis revealed alterations in transcription in key pathways that are consistent with impaired capacity for fatty acid oxidation driven mitochondrial ATP synthesis in obese subjects who are resistant to weight loss.
Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity.
Sex, Subject, Time
View SamplesTransfection experiments aimed at understanding the impact of upregulating lncRNA RP11-326A19.4 on the transcriptome; follow-up of GSE132451
<i>CARMAL</i> Is a Long Non-coding RNA Locus That Regulates <i>MFGE8</i> Expression.
Specimen part
View SamplesDeletion experiment aimed at understanding the role of lncRNA RP11-326A19.4 /CARMAL via its deletion. The impact on of the deletion on the transcriptome was assessed by array analysis.
<i>CARMAL</i> Is a Long Non-coding RNA Locus That Regulates <i>MFGE8</i> Expression.
Specimen part
View Samples