All patients with suspected ovarian cancer (Raised CA 125 and a complex pelvic mass in a perimenopausal woman) were radiologically staged using CT scan and a chest x-ray. Patients with evidence of intra-abdominal metastasis and/or malignant pleural effusion were approached for entry to the study. Tissue biopsy was obtained either under radiological control (core needle biopsy) or via laparoscopic surgery (punch biopsy). Patients with histologicaly confirmed epithelial ovarian cancer were randomized to receive either three cycles of carboplatin (AUC 7) or paclitaxel (175 mg/m2).
The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel.
Treatment
View SamplesAll patients with suspected ovarian cancer (Raised CA 125 and a complex pelvic mass in a perimenopausal woman) were radiologically staged using CT scan and a chest x-ray. Patients with evidence of intra-abdominal metastasis and/or malignant pleural effusion were approached for entry to the study. Tissue biopsy was obtained either under radiological control (core needle biopsy) or via laparoscopic surgery (punch biopsy). Patients with histologicaly confirmed epithelial ovarian cancer were randomized to receive either three cycles of carboplatin (AUC 7) or paclitaxel (175 mg/m2).
The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel.
No sample metadata fields
View SamplesWe recently identified ISRIB as a potent inhibitor of the integrated stress response (ISR). ISRIB renders cells resistant to the effects of eIF2a phosphorylation and enhances long-term memory in rodents (10.7554/eLife.00498). Here we show by genome-wide in vivo ribosome profiling that translation of a restricted subset of mRNAs is induced upon ISR activation. ISRIB substantially reversed the translational effects elicited by phosphorylation of eIF2a and induced no major changes in translation or mRNA levels in unstressed cells. eIF2a phosphorylation-induced stress granule (SG) formation was blocked by ISRIB. Strikingly, ISRIB addition to stressed cells with pre-formed SGs induced their rapid disassembly, liberating mRNAs into the actively translating pool. Restoration of mRNA translation and modulation of SG dynamics may be an effective treatment of neurodegenerative diseases characterized by eIF2a phosphorylation, SG formation and cognitive loss. Overall design: Ribosome profiling with paired RNA-seq
The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly.
No sample metadata fields
View SamplesBackground: Weaning of beef calves is a necessary husbandry practice and involves separating the calf from its mother, resulting in numerous stressful events including dietary change, social reorganisation and the cessation of the maternal-offspring bond and is often accompanied by housing. While much recent research has focused on the physiological response of the bovine immune system to stress in recent years, little is known about the molecular mechanisms modulating the immune response. Therefore, the objective of this study was to provide new insights into the molecular mechanisms underlying the physiological response to weaning at housing in beef calves using Illumina RNA-seq. Results: The leukocyte transcriptome was significantly altered for at least 7 days following either housing or weaning at housing. Analysis of differentially expressed genes revealed that four main pathways, cytokine signalling, transmembrane transport, haemostasis and G-protein-coupled receptor (GPRC) signalling, were differentially regulated between control and weaned calves and underwent significant transcriptomic alterations in response to weaning stress on day 1, 2 and 7. Of particular note, chemokines, cytokines and integrins were consistently found to be up-regulated on each day following weaning. Evidence for alternative splicing of genes was also detected, indicating that a number of genes involved in the innate and adaptive immune response may be alternatively transcribed, including those responsible for toll receptor cascades and T cell receptor signalling. Conclusions: This study represents the first application of RNA-Seq technology for genomic studies in bovine leukocytes in response to weaning stress. Weaning stress induces the activation of a number of cytokine, chemokine and integrin transcripts and may alter the immune system whereby the ability of a number of cells of the innate and adaptive immune system to locate and destroy pathogens is transcriptionally enhanced. Stress alters the homeostasis of the transcriptomic environment of leukocytes for at least 7 days following weaning, indicating long-term effects of stress exposure in the bovine. The identification of gene signature networks that are stress activated provides a mechanistic framework to characterise the multifaceted nature of weaning stress adaptation in beef calves. Thus, capturing subtle transcriptomic changes provides insight into the molecular mechanisms that underlie the physiological response to weaning stress. Overall design: Examination of a time course (day 0, 1, 2 and 7) for 2 treatments, calves either housed with their dam (control) or housed and simultaneously weaned, using RNA-seq. The supplementary processed data file 'read_counts.txt' contains unnormalized read counts for each Ensembl bovine gene in each of the 48 samples. Unnormalized counts are required for input to EdgeR. Genome build: Btau4.0
Transcriptomic analysis of the stress response to weaning at housing in bovine leukocytes using RNA-seq technology.
Specimen part, Disease, Treatment, Subject
View SamplesRecessive retinitis pigmentosa (RP) is often caused by nonsense mutations that lead to low mRNA levels as a result of nonsense-mediated decay. Some RP genes are expressed at detectable levels in leukocytes as well as in the retina. We designed a microarray-based method to find recessive RP genes based on low lymphoblast mRNA expression levels
Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle.
No sample metadata fields
View SamplesThis study identifies a transciptomic myometrial profile associated with dystocia in spontanous nulliparous term labour
Identification of a myometrial molecular profile for dystocic labor.
Sex, Specimen part
View SamplesEngineering microbes with novel metabolic properties is a critical step for production of biofuels and biochemicals. Synthetic biology enables identification and engineering of metabolic pathways into microbes; however, knowledge of how to reroute cellular regulatory signals and metabolic flux remains lacking. Here we used network analysis of multi-omic data to dissect the mechanism of anaerobic xylose fermentation, a trait important for biochemical production from plant lignocellulose. We compared transcriptomic, proteomic, and phosphoproteomic differences across a series of strains evolved to ferment xylose under various conditions. Overall design: RNA-seq and transcriptome analysis of three evolved S. cerevisiae strains (Y22-3, Y127, Y128) grown aerobically or anaerobically in rich lab media with glucose, xylose, galactose, or sorbitol. Duplicates were collected on different days.
Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast.
Subject
View SamplesTransgenic FVB/NCrl-Tg(GFAP-Mir183,Mir96,Mir182)MDW1 mice (Tg1MDW) overexpress this neurosensory-specific miRNA cluster in the inner ear and were developed as a model system to identify target genes and biologic processes regulated by the miR-183 cluster.
A mouse model of miR-96, miR-182 and miR-183 misexpression implicates miRNAs in cochlear cell fate and homeostasis.
Specimen part
View SamplesEngineering microbes with novel metabolic properties is a critical step for production of biofuels and biochemicals. Synthetic biology enables identification and engineering of metabolic pathways into microbes; however, knowledge of how to reroute cellular regulatory signals and metabolic flux remains lacking. Here we used network analysis of multi-omic data to dissect the mechanism of anaerobic xylose fermentation, a trait important for biochemical production from plant lignocellulose. We compared transcriptomic, proteomic, and phosphoproteomic differences across a series of strains evolved to ferment xylose under various conditions. Overall design: RNA-seq and transcriptome analysis of Azf1 deletion and over-expression (via MoBY 2.0 plasmid) in YPX -O2. Duplicate samples were collected on different days.
Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast.
Subject
View SamplesRNA-sequencing of SSP RNA from patients with serrated polyposis syndrome identifies VSIG1 and MUC17 as potential diagnostic markers for SSPs Overall design: 5'' capped RNA from seven ascending SSPs, six patient matched uninvolved right colon and two normal right colon samples was used for RNA sequencing (15 samples total)
RNA sequencing of sessile serrated colon polyps identifies differentially expressed genes and immunohistochemical markers.
Sex, Disease, Subject
View Samples