In this study we demonstrate that the lung mononuclear phagocyte system comprises three interstitial macrophages (IMs), as well as alveolar macrophages (AMs), dendritic cells and few extravascular monocytes. Through cell sorting and RNAseq analysis we were able to identify transcriptional similarities and differences between the three pulmonary IM subtypes, with reference to the more well-characterized alveolar macrophage Overall design: Pulmonary Interstitial and Alveolar macrophages were FACS sorted from the lungs of steady state 8-10 week old B6 mice, in triplicate. Extracted RNA was examined by RNAsequencing. The tar archive GSE94135_jakubzick_2019*tar available at the foot of this page contains the supplementary processed data used for comparisons with data in GSE132911. Data were processed as described in GSE132911.
Three Unique Interstitial Macrophages in the Murine Lung at Steady State.
Specimen part, Cell line, Subject
View SamplesMacrophages (MF) have been shown to contribute to fibrogenesis, however the underlying mechanisms and specific MF subsets involved remain unclear. Lung MF can be divided into two subsets: Siglec-Fhi resident alveolar MF and CD11bhi MF that primarily arise from immigrating monocytes. RNA-seq analysis was performed to compare these MF subsets during fibrosis. CD11bhi MF, not Siglec-Fhi MF, expressed high levels of pro-fibrotic chemokines and growth factors. Overall design: C56BL/6 WT mice were treated intratracheally with bleomycin. 8 days later, CD64+Mertk+ MF were sorted into Siglec-F(high) and CD11b(high) subsets. SiglecF(high) MF from naïve mice were also sorted. RNA was isolated and RNA-seq was performed to compare MF subsets.
Deletion of c-FLIP from CD11b<sup>hi</sup> Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis.
Sex, Age, Specimen part, Cell line, Treatment, Subject
View SamplesInfection is a major complication and cause of mortality and morbidity after acute stroke however the mechanisms are poorly understood. After experimental stroke the microarchitecture and cellular composition of the spleen are extensively disrupted resulting in deficits to immune function.
Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages.
Specimen part, Treatment
View SamplesIt is well-established that neurons in the adult mammalian central nervous system are terminally differentiated and, if injured, will be unable to regenerate their connections. In contrast to mammals, zebrafish and other teleosts display a robust neuroregenerative response. Following optic nerve crush (ONX), retinal ganglion cells (RGC) regrow their axons to synapse with topographically correct targets in the optic tectum, such that vision is restored in ~21 days. What accounts for these differences between teleostean and mammalian responses to neural injury is not fully understood. A time course analysis of global gene expression patterns in the zebrafish eye after optic nerve crush can help to elucidate cellular and molecular mechanisms that contribute to a successful neuroregeneration.
Time Course Analysis of Gene Expression Patterns in Zebrafish Eye During Optic Nerve Regeneration.
Specimen part
View SamplesBackground: Transposable elements are known to influence the regulation of some genes. We aimed to determine which genes show altered gene expression when transposable elements are epigenetically activated.
Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs.
Specimen part
View SamplesTransfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC domain family in Arabidopsis play important roles in regulating wall ingrowth deposition in PP TCs. Overall design: The sampling enabled three different temporal and spatial pair-wise comparisons for RNA-Seq analysis, namely: (i) cotyledons at Day 5 vs Day 10; (ii) Leaf 1 and Leaf 2 (first juvenile leaves) at Day 10 vs Day 16; and (iii) basal vs apical third (base vs tip) of Leaf 12 at Day 31. This analysis provided temporal and spatial comparisons of tissues with absent vs abundant wall ingrowth deposition in phloem parenchyma transfer cells.
Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of <i>Arabidopsis thaliana</i>.
Specimen part, Subject
View SamplesSubpopulations of human fetal thymocyte and circulating nave T cells were obtained through FACS sorting, including CD3-CD4+CD8- intrathymic T progenitor cells (ITTP), CD3intCD4+CD8+ "double positive" thymocytes (DP), CD3highCD4+CD8- "single positive" thymocytes (SP4), CD3+CD4+CD8-CD45RA+CD62L+ nave T cells from cord blood (CB4+), and CD3+CD4+CD8-CD45RA+CD62L+ nave T cells from adult blood (AB4+).
Gene expression profiles during human CD4+ T cell differentiation.
No sample metadata fields
View SamplesWe access the activity-dependent genes in olfactory neuron cells with unilateral naris occlusion model with mouse. Overall design: mRNA profile of olfactory epithelia between closed and open sides of mice naris was compared
Activity-Dependent Gene Expression in the Mammalian Olfactory Epithelium.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Divergent transcriptomic responses to aryl hydrocarbon receptor agonists between rat and human primary hepatocytes.
Sex, Age, Specimen part
View Samples(Abstract) Toxicogenomics has great potential for enhancing our understanding of environmental chemical toxicity, hopefully leading to better-informed human health risk assessments. This study employed toxicogenomic technology to reveal species differences in response to two prototypical aryl hydrocarbon receptor (AHR) agonists, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the polychlorinated biphenyl (PCB) congener PCB 126. Dose responses of primary cultures of rat and human hepatocytes were determined using species-specific microarrays sharing over 4,000 gene orthologs. Forty-seven human and 79 rat genes satisfied dose response criteria for both chemicals and were subjected to further analysis including the calculation of EC50 and the relative potency (REP) of PCB 126 for each gene. Only 5 responsive orthologous genes were shared between the two species, yet the geometric mean of the REPs for all rat and human modeled responsive genes were 0.06 (95% Confidence Interval (CI); 0.03-0.1) and 0.002 (95% CI; 0.001-0.005), respectively, suggesting broad species differences in the initial events that follow AHR activation but precede toxicity. This indicates that there are species differences in both the specific genes that responded and the agonist potency and relative potency for those genes. This observed insensitivity of human cells to PCB 126 is consistent with more traditional measurements of AHR activation (i.e., CYP1A1 enzyme activity) and suggests that the species difference in PCB 126 sensitivity is likely due to certain aspects of AHR function. That a species divergence also exists in this expanded AHR-regulated gene repertoire is a novel finding and should help when extrapolating animal data to humans.
Divergent transcriptomic responses to aryl hydrocarbon receptor agonists between rat and human primary hepatocytes.
Sex, Age, Specimen part
View Samples