Infection is a major complication and cause of mortality and morbidity after acute stroke however the mechanisms are poorly understood. After experimental stroke the microarchitecture and cellular composition of the spleen are extensively disrupted resulting in deficits to immune function.
Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages.
Specimen part, Treatment
View SamplesCalcific aortic valvular disease (CAVD) is characterized by sclerosis of the aortic valve leaflets and recent clinical studies have linked several other risk factors to this disease, including male sex. In this study we examined potential sex-related differences in gene expression profiles between porcine male and female valvular interstitial cells (VICs) to explore possible differences in CAVD propensity on the cellular level.
Sex-related differences in gene expression by porcine aortic valvular interstitial cells.
Sex, Specimen part
View SamplesPrimary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. To identify a common cellular response to RC disease, systems biology level transcriptome investigations were performed in human RC disease skeletal muscle and fibroblasts. Global transcriptional and post-transcriptional dysregulation in a tissue-specific fashion was identified across diverse RC complex and genetic etiologies. RC disease muscle was characterized by decreased transcription of cytosolic ribosomal proteins to reduce energy-intensive anabolic processes, increased transcription of mitochondrial ribosomal proteins, shortened 5'-UTRs to improve translational efficiency, and stabilization of 3'-UTRs containing AU-rich elements. These same modifications in a reversed direction typified RC disease fibroblasts. RC disease also dysregulated transcriptional networks related to basic nutrient-sensing signaling pathways, which collectively mediate many aspects of tissue-specific cellular responses to primary RC disease. These findings support the utility of a systems biology approach to improve mechanistic understanding of mitochondrial RC disease.
Primary respiratory chain disease causes tissue-specific dysregulation of the global transcriptome and nutrient-sensing signaling network.
Sex, Age, Specimen part
View SamplesBone marrow-derived progenitor cells are under investigation for cardiovascular repair, but may be altered by disease. We identified 82 differentially expressed genes in CD133+ cells from patients with coronary artery disease (CAD) versus controls, of which 59 were found to be up-regulated and 23 down-regulated. These genes were found to be involved in carbohydrate metabolism, cellular development and signaling, molecular transport and cell differentiation. Following completion of an exercise program, gene expression patterns resembled those of controls in 7 of 10 patients.
Transcriptional profiling of CD133(+) cells in coronary artery disease and effects of exercise on gene expression.
Specimen part, Disease, Treatment
View SamplesSystemic sclerosis (SSc) is a rare but devastating disease of fibrosis impacting the dermis and multiple organ systems. The prevalence ranges from 4 to 489 cases per million individuals with ten year mortality rates reported around 18 percent. Survival is related to the extent of skin involvement, yet the precise mechanisms driving skin fibrosis in SSc remain unknown. In this study, we analyzed the shared and unique transcriptomic profiles of SSc and normal keratinocytes.
Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.
Specimen part, Disease, Disease stage
View SamplesThe complexity of the mature adult brain is a result of both developmental processes and experience-dependent circuit formation. One way to look at the process of brain development is to examine gene expression changes, and previous studies have used microarrays to address this in a global manner. However, the transcriptome is more complex than gene expression levels alone, as both alternative splicing and RNA editing occur to generate a more diverse set of mature transcripts. The aim of the current study was to develop a high-resolution transcriptome dataset of mouse cortical development using RNA sequencing (RNA-Seq), thus assaying exon usage and RNA editing as well as overcoming some of the inherent limitations of microarrays. We found a large number of differentially expressed genes, but also altered splicing and RNA editing between embryonic and adult cerebral cortex. Each dataset was validated both technically and biologically, and in each case tested we found our RNA-Seq observations to have high predictive validity. We propose this dataset, and the accompanying analysis, to be a helpful resource in the understanding of changes in gene expression during development. Overall design: Three young adult cerebral cortices four embryonic cerebral cortices
mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex.
Specimen part, Cell line, Subject
View SamplesBulk RNA Sequencing of Healthy Bone Marrow Mononuclear Cells Overall design: Using standard operating procedures, mononuclear cells from bone marrow aspirates were isolated using Ficoll density gradient separation and cryopreserved in 90% FBS/ 10% DMSO for storage in liquid nitrogen. RNA was harvested from thawed cell vials of BMMCs using AllPrep kits (QIAGEN). Libraries were prepared using TruSeq Stranded Total RNA Sample Preparation Kit (Illumina) with 1ug of RNA input. Sequencing was performed by paired-end 75 nt on Illumina HiSeq 3000.
Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry.
Age, Specimen part, Subject
View SamplesMethamphetamine (METH) is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge.
Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum.
Sex, Age, Specimen part, Treatment
View SamplesHepatocellular carcinoma (HCC) represents the fifth most common form of cancer worldwide and carries a high mortality rate due to lack of effective treatment. Males are eight times more likely to develop HCC that females, an effect largely driven by sex hormones, albeit through still poorly understood mechanisms. We previously identified TRIM28, a scaffold protein capable of recruiting a number of chromatin modifiers, as a crucial mediator of sexual dimorphism in the liver, with Trim28hep-/- mice displaying sex-specific transcriptional deregulation of a wide range of bile and steroid metabolism genes and development of liver adenomas in males. We now demonstrate that obesity and ageing precipitate alterations of TRIM28-dependent transcriptional dynamics, leading to a metabolic infection state responsible for highly penetrant male-restricted hepatic carcinogenesis. Molecular analyses implicate aberrant androgen receptor stimulation, biliary acid disturbances and altered responses to gut microbiota in the pathogenesis of Trim28hep-/--associated HCC. Correspondingly, androgen deprivation markedly attenuates the frequency and severity of tumors, and raising animals under axenic conditions completely abrogates their abnormal phenotype, even upon high-fat diet challenge. This work underpins how discrete polyphenic traits in epigenetically unstable conditions can contribute to a cancer-prone state, and more broadly provides new evidence linking hormonal imbalances, metabolic disturbances, gut microbiota and cancer. Overall design: Transcriptome profiling of liver tissues from TgAlbCre or TgAlbCreKap1lox mice in HFD settings
Polyphenic trait promotes liver cancer in a model of epigenetic instability in mice.
Specimen part, Subject, Time
View SamplesNeuronal microRNAs, miR-9/9* and miR-124 (miR-9/9*-124), exert reprogramming activities to direct cell-fate conversion of adult human fibroblasts to post-mitotic neurons and enable the generation of discrete neuronal subtypes with additional transcription factors. Previously, the molecular events underlying the neurogenic switch mediated by microRNAs during neuronal reprogramming were unknown. Here, we systematically dissected the neurogenic state induced by miR-9/9*-124 alone and reveal the surprising capability of miR-9/9*-124 in coordinately stimulating the reconfiguration of chromatin accessibilities, DNA methylation and transcriptome, leading to the generation of functionally excitable neurons, yet unbiased towards a particular subtype-lineage. We show that the microRNA-induced neuronal state enables additional transcription factors, ISL1 and LHX3, to selectively commit conversion to a highly homogenous population of human spinal cord motor neurons. Taken together, our study reveals a modular synergism between microRNAs and transcription factors that allows lineage-specific neuronal reprogramming, providing a platform for generating distinct subtypes of human neurons. Overall design: Human fibroblasts were reprogrammed by microRNAs miR-9/9* and miR-124 (miNs). To profile transcriptome of the reprogrammed cells, mRNA were isolated from miNs day 30 and starting fibroblasts.
MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts.
Specimen part, Cell line, Treatment, Subject, Time
View Samples