In order to define the targets of two miRNA overexpressed in NK cells in CFS/ME paitents, miRNA precursors for hsa-miR-99b and hsa-miR-330-3p were transfected in to buffy coat derived Natural Killer cells isolated by negative magnetic selection.
MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME).
Specimen part, Disease, Disease stage
View SamplesMicroglia are fundamentally important immune cells within the central nervous system (CNS) that respond to environmental challenges to maintain normal physiological processes. Alterations in steady-state cellular function and over-activation of microglia can facilitate the initiation and progression of neuropathological conditions such as Alzheimer's disease, Multiple Sclerosis, and Major Depressive Disorder. Alcohol consumption disrupts signaling pathways including both innate and adaptive immune responses that are necessary for CNS homeostasis. Unbiased RNA-Seq profiling was used to identify gene expression changes in isolated microglia in response to recurring bouts of voluntary alcohol drinking behavior. Gene coexpression analysis identified a coordinately regulated group of genes, unique to microglia, that collectively are associated with alcohol consumption. Several genes in this group were involved in toll-like receptor signaling and production of the inflammatory cytokine interferon-gamma. Coordinate expression of these genes is not ascertained from an admixture of CNS cell-types, underscoring the importance of examining isolated cellular populations to reveal systematic gene expression changes arising from mature microglia. We identified a distinctive microglial gene expression signature for neuroimmune responses related to alcohol consumption that provides valuable insight into microglia-specific changes underlying the development of substance abuse, as well as related CNS disorders. Overall design: We examined mRNA from both total homogenate (mixture of all cell types) and microglia from the cortex of control mice and mice that have undergone chronic voluntary ethanol consumption
Microglial-specific transcriptome changes following chronic alcohol consumption.
Specimen part, Cell line, Treatment, Subject
View SamplesGlobal gene expression patterns were determined from microarray results on day 1, 3, 5, 7, 10 and 14 during plantaris muscle hypertrophy induced by synergist ablation in young adult mice (5 months).
Time course of gene expression during mouse skeletal muscle hypertrophy.
Sex, Age, Specimen part, Treatment, Time
View SamplesPathogen-specific polyfunctional T cell responses have been associated with favorable clinical outcomes but it is not known whether polyfunctional T cells are distinct from monofunctional cytokine producing T cells. In this study we compared the transcriptomic profile of P. falciparum reactive polyfunctional and IFNg monofunctional CD4 T cells by microarray analysis and show that polyfunctional CD4 T cells are associated with a unique transcriptomic signature.
Polyfunctional and IFN-<b>γ</b> monofunctional human CD4<sup>+</sup> T cell populations are molecularly distinct.
No sample metadata fields
View SamplesTranscriptome analysis of skeletal muscle during hypertrophic growth in aged mice
Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis.
Sex, Age, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Time-course analysis of the effect of embedded metal on skeletal muscle gene expression.
Sex, Specimen part, Treatment, Time
View SamplesAs a consequence of military operations, many veterans suffer from penetrating wounds and long-term retention of military grade heavy metal fragments. Fragments vary in size and location, and complete surgical removal may not be feasible or beneficial in all cases. Increasing evidence suggests retention of heavy metal fragments may have serious biological implications, including increased risks for malignant transformation. Previous studies assessed the tumorigenic effects of metal alloys in rats, demonstrating combinations of metals are sufficient to induce tumor formation after prolonged retention in skeletal muscle tissue. In this study, we analyzed transcriptional changes in skeletal muscle tissue in response to eight different military-relevant pure metals over 12 months. We found that most transcriptional changes occur at 1 and 3 months after metal pellets are embedded in skeletal muscle and these effects resolve at 6 and 12 months. We also report significant immunogenic effects of nickel and cobalt and suppressive effects of lead and depleted uranium on gene expression. Overall, skeletal muscle exhibits a remarkable capacity to adapt to and recover from internalized metal fragments; however, the cellular response to chronic exposure may be restricted to the metal-tissue interface. This data suggests that unless affected regions are specifically captured by biopsy, it would be difficult to reliably detect changes in muscle gene expression that would be indicative of long-term adverse health outcomes.
Time-course analysis of the effect of embedded metal on skeletal muscle gene expression.
Sex, Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach.
No sample metadata fields
View SamplesIn high yielding dairy cows the liver undergoes extensive physiological and biochemical changes during the early postpartum period in an effort to re-establish metabolic homeostasis and to counteract the adverse effects of negative energy balance (NEB). These adaptations are likely to be mediated by significant alterations in hepatic gene expression. To gain new insights into these events an EB model was created using differential feeding and milking regimes to produce two groups of cows with either a mild (MNEB) (n=5) or severe NEB (SNEB) (n=6) status. Cows were slaughtered and liver tissues collected on days 6-7 of the first follicular wave postpartum. Using an Affymetrix 23k oligonucleotide bovine array to determine global gene expression in hepatic tissue of these cows, a total of 416 genes (189 up- and 227 down-regulated) were found to be altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with widespread changes in gene expression classified into 36 gene networks including those associated with lipid metabolism, connective tissue development and function, cell signalling, cell cycle and metabolic diseases. Severe NEB cows displayed reduced expression of transcription activators and signal transducers that regulate the expression of genes and gene networks associated with cell signalling and tissue repair. These alterations are linked with increased expression of abnormal cell cycle and cellular proliferation associated pathways. This study provides new information and insights on the effect of SNEB on gene expression in high yielding Holstein Friesian dairy cows in the early postpartum period.
Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach.
No sample metadata fields
View SamplesGlobal gene expression patterns were determined from microarray results from sham surgery or following 1 week of plantaris muscle hypertrophy induced by synergist ablation in young adult Pax7-DTA mice (4 months).
Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy.
Age, Specimen part
View Samples