This is the expression dataset for two studies: 1) Characterization of visceral and subcutaneous adipose tissue transcriptome and biological pathways in pregnant and non-pregnant women: Evidence for pregnancy-related regional-specific differences in adipose tissue and 2) Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: Implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.
Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.
Specimen part, Disease stage, Subject
View SamplesThe adult human lung has a very limited capacity to regenerate functional alveoli. In contrast, adult mice have a remarkable capacity for neoalveolarization following either lung resection or injury. The molecular basis for this unique capability to regenerate lung tissue in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling used in this species during lung regeneration. Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points). Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days) and analyzed using microarray technology. The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1), as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts, up-regulation of genes involved in T cell development and function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This appears to differ from embryonic alveologenesis. These data suggest that modulation of mesenchymal cell signaling and proliferation may act in concert with immunomodulation to control inflammation during post-pneumonectomy lung regeneration in adult mice.
Global gene expression patterns in the post-pneumonectomy lung of adult mice.
Sex, Treatment, Time
View SamplesEmploying MCT-1 oncogene mediated transformation of immortalized breast epithelial MCF10A cells; we characterized the largely reciprocal association of these two RBPs with target mRNAs and their influence on protein expression vis--vis cellular transformation. Using a ribonomics approach, we identified mRNAs from cancer-related pathways whose association with AUF1 and/or HuR were altered when comparing immortalized with transformed MCF10A cells.
Identification of transformation-related pathways in a breast epithelial cell model using a ribonomics approach.
No sample metadata fields
View SamplesMitochondrial dysfunction causes biophysical, metabolic and signalling changes that alter homeostasis and reprogram cells. We used a Drosophila model in which TFAM is overexpressed in the nervous system with or without Ras/MAPK pathway inhibition, by knock-down of the ETS transcription factor pointed, to investigate the how mitochondrial dysfunction and Ras/MAPK signalling affect the transcriptome.
Ras-ERK-ETS inhibition alleviates neuronal mitochondrial dysfunction by reprogramming mitochondrial retrograde signaling.
Specimen part
View SamplesWe analyzed expression of 81 normal muscle samples from humans of varying ages, and have identified a molecular profile for aging consisting of 250 age-regulated genes. This molecular profile correlates not only with chronological age but also with a measure of physiological age. We compared the transcriptional profile of muscle aging to previous transcriptional profiles of aging in kidney and brain, and found a common signature for aging in these diverse human tissues. The common aging signature consists of six genetic pathways; four pathways increase expression with age (genes in the extracellular matrix, genes involved in cell growth, genes encoding factors involved in complement activation, and genes encoding components of the cytosolic ribosome), while two pathways decrease expression with age (genes involved in chloride transport and genes encoding subunits of the mitochondrial electron transport chain). We also compared transcriptional profiles of aging in human to those of the mouse and fly, and found that the electron transport chain pathway decreases expression with age in all three organisms, suggesting that this may be a public marker for aging across species.
Transcriptional profiling of aging in human muscle reveals a common aging signature.
Sex
View SamplesAnaplasma phagocytophilum infects a wide variety of host species and causes the diseases granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. The objective of this research was to characterize differential gene expression in wild boar naturally infected with A. phagocytophilum by microarray hybridization using the GeneChip Porcine Genome Array
Gene expression profile suggests that pigs (Sus scrofa) are susceptible to Anaplasma phagocytophilum but control infection.
Specimen part, Disease, Disease stage
View SamplesWe examined the biological effects of a potent second-generation proteasome inhibitor, ixazomib, in T-cell lymphoma and Hodgkin lymphoma cell lines and human xenograft models. Ixazomib resulted in time- and dose-dependent cytotoxicity and apoptosis in all cell lines (IC50s <75nM). In vivo studies via SCID tumor xenografts showed significant inhibition of tumor growth (P<0.001) with significantly improved survival (P<0.001) in Jurkat and L540 models with ixazomib-treated mice versus controls. Through global transcriptome and network analyses, ixazomib-treated Jurkat and L540 cells showed significant overlap in biological functions involved in regulation of cell cycle, chromatin modification, and DNA repair processes with a lack of conservation observed in a relatively ixazomib-resistant cell line, L428. Moreover, the predicted activation and inhibition status of tumor suppressors and oncogenes strongly favored ixazomib inhibition of tumor progression. Most notably, ixazomib down-regulated protein levels of MYC and its target genes. Additionally, chromatin immunoprecipitation showed that histone H3 acetylation affected MYC levels and cell death response to ixazomib. Furthermore, inhibition of MYC with JQ1 resulted in synergistic cell death in L428, which was confirmed utilizing MYC knockout. Collectively, ixazomib down-regulated MYC and downstream substrates in TCL and HL, while resistance appeared mediated through MYC- and CHK1-dependent mechanisms.
Proteasomal Inhibition by Ixazomib Induces CHK1 and MYC-Dependent Cell Death in T-cell and Hodgkin Lymphoma.
Specimen part, Treatment
View SamplesRespiratory innate immunity requires alveolar macrophages, which are specifically targeted by the S. aureus toxin alpha toxin. These data compare the response of alveolar macrophages to S. aureus with or without alpha toxin neutralization.
S. aureus Evades Macrophage Killing through NLRP3-Dependent Effects on Mitochondrial Trafficking.
Sex, Age, Specimen part, Treatment
View SamplesCholine kinase alpha (CHKA) plays a crucial role in the regulation of membrane phospholipid synthesis and has oncogenic properties in vitro. We have analyzed the expression of CHKA in cell lines derived from pancreatic ductal adenocarcinoma (PDAC) and have found increased CHKA expression and a good correlation between protein expression and sensitivity to MN58b, a CHKA inhibitor that reduced cell growth through the induction of apoptosis. Accordingly, CHKA knockdown led to reduced drug sensitivity. In addition, we found that gemcitabine-resistant PDAC cells displayed enhanced sensitivity to CHKA inhibition and, in vitro, MN58b had synergistic effects with gemcitabine, 5-fluorouracil and oxaliplatin, three active drugs in the treatment of PDAC. Using tissue microarrays, CHKA was found to be overexpressed in 90% of pancreatic tumors. While cytoplasmic CHKA did not relate to survival, nuclear CHKA distribution was observed in 43% of samples and was associated with survival, especially among patients with well/moderately differentiated tumors. To identify the mechanisms involved in resistance to CHKA inhibitors, we cultured IMIM-PC-2 cells with continuous incremental concentrations of MN58b and isolated a subline with a 30-fold higher IC50. RNA-Seq analysis identified up-regulation of ABCB1 and ABCB4 multidrug resistance transporters and functional studies confirmed that their up-regulation is the main mechanism involved in resistance. Overall, our findings support the notion that CHKA inhibition merits further attention as a therapeutic option in patients with PDAC. Overall design: RNA profile from parental and MN58b-resistant IMIM-PC-2 were generated by deep sequencing were done in triplicates using illumina GAIIx
Choline Kinase Alpha (CHKα) as a Therapeutic Target in Pancreatic Ductal Adenocarcinoma: Expression, Predictive Value, and Sensitivity to Inhibitors.
No sample metadata fields
View SamplesCholine kinase a (CHKa) plays a crucial role in the regulation of membrane phospholipid synthesis and has oncogenic properties in vitro. We have analyzed the expression of CHKa in cell lines derived from pancreatic ductal adenocarcinoma (PDAC) and have found increased CHKa expression, associated with differentiation. CHKa protein expression was directly correlated with sensitivity to MN58b, a CHKa inhibitor that reduced cell growth through the induction of apoptosis. Accordingly, CHKa knockdown led to reduced drug sensitivity. In addition, we found that gemcitabine-resistant PDAC cells displayed enhanced sensitivity to CHKa inhibition and, in vitro, MN58b had additive or synergistic effects with gemcitabine, 5-fluorouracil, and oxaliplatin, three active drugs in the treatment of PDAC. Using tissue microarrays, CHKa was found to be overexpressed in 90% of pancreatic tumors. While cytoplasmic CHKa did not relate to survival, nuclear CHKa distribution was observed in 43% of samples and was associated with longer survival, especially among patients with well/moderately differentiated tumors. To identify the mechanisms involved in resistance to CHKa inhibitors, we cultured IMIM-PC-2 cells with increasingly higher concentrations of MN58b and isolated a subline with a 30-fold higher IC50. RNA-Seq analysis identified upregulation of ABCB1 and ABCB4 multidrug resistance transporters, and functional studies confirmed that their upregulation is the main mechanism involved in resistance. Overall, our findings support the notion that CHKa inhibition merits further attention as a therapeutic option in patients with PDAC and that expression levels may predict response. Overall design: RNAseq from parental (IMIM-PC2 cell line)) and MN58b-resistant cells by triplicate
Choline Kinase Alpha (CHKα) as a Therapeutic Target in Pancreatic Ductal Adenocarcinoma: Expression, Predictive Value, and Sensitivity to Inhibitors.
Sex, Specimen part, Cell line, Subject
View Samples