Purpose: Traditional whole-tissue sequencing approaches do not fully capture brain cell-type specific effects of chronic alcohol. Therefore, the purpose of this study was to identify the specific transcriptome alterations in astrocytes due to chronic alcohol. Methods: We performed RNA-sequencing on astrocytes isolated from the prefrontal cortex (PFC) of C57BL/6J mice following chronic every-other-day alcohol consumption. Results: Differential expression analysis revealed alcohol-induced gene expression changes unique to astrocytes that could not be identified using whole tissue homogenate analysis. Enrichment analysis revealed involvement of calcium-related signaling and regulation of extracellular matrix genes in the astrocyte response to alcohol abuse. Conclusion: Our study presents the first focused analysis on the astrocyte transcriptome following chronic alcohol consumption, provides a framework for studying the functional response of astrocytes to alcohol and the possible astrocyte-specific effects of alcohol. In addition, our data represents a novel resource for groups interested in biological functions of astrocytes in the adult mouse PFC. Overall design: Illumina RNA-sequencing of isolated astrocytes and total homogenate from PFC of mice following chronic alcohol consumption
Astrocyte-specific transcriptome responses to chronic ethanol consumption.
Specimen part, Cell line, Treatment, Subject
View SamplesAction of alcohol on synaptic mRNA in the amygdala of mice
The synaptoneurosome transcriptome: a model for profiling the emolecular effects of alcohol.
Sex, Age, Specimen part
View SamplesMicroglia are fundamentally important immune cells within the central nervous system (CNS) that respond to environmental challenges to maintain normal physiological processes. Alterations in steady-state cellular function and over-activation of microglia can facilitate the initiation and progression of neuropathological conditions such as Alzheimer's disease, Multiple Sclerosis, and Major Depressive Disorder. Alcohol consumption disrupts signaling pathways including both innate and adaptive immune responses that are necessary for CNS homeostasis. Unbiased RNA-Seq profiling was used to identify gene expression changes in isolated microglia in response to recurring bouts of voluntary alcohol drinking behavior. Gene coexpression analysis identified a coordinately regulated group of genes, unique to microglia, that collectively are associated with alcohol consumption. Several genes in this group were involved in toll-like receptor signaling and production of the inflammatory cytokine interferon-gamma. Coordinate expression of these genes is not ascertained from an admixture of CNS cell-types, underscoring the importance of examining isolated cellular populations to reveal systematic gene expression changes arising from mature microglia. We identified a distinctive microglial gene expression signature for neuroimmune responses related to alcohol consumption that provides valuable insight into microglia-specific changes underlying the development of substance abuse, as well as related CNS disorders. Overall design: We examined mRNA from both total homogenate (mixture of all cell types) and microglia from the cortex of control mice and mice that have undergone chronic voluntary ethanol consumption
Microglial-specific transcriptome changes following chronic alcohol consumption.
Specimen part, Cell line, Treatment, Subject
View SamplesThis study investigated changes in gene expression associated with ethanol drinking in adult male P rats under the following conditions for 8 weeks: continuous access (24 hr/day, 7 days/week), multiple scheduled access (three 1-hr sessions during the dark cycle/day, 5 days/week) and ethanol-naive (water).
Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression.
Sex, Specimen part
View SamplesBiallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila, and mouse models, we show that the proteins encoded by SMARCAL1 orthologues localize to transcriptionally active chromatin and modulate gene expression. We also show that similar to SIOD patients, deficiency of the SMARCAL1 orthologues alone is insufficient to cause disease in fruit flies and mice although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.
Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression.
Sex, Specimen part
View SamplesBiallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila, and mouse models, we show that the proteins encoded by SMARCAL1 orthologues localize to transcriptionally active chromatin and modulate gene expression. We also show that similar to SIOD patients, deficiency of the SMARCAL1 orthologues alone is insufficient to cause disease in fruit flies and mice although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD. Overall design: The RNA sequencing libraries were constructed from the liver RNA of 3-4-month Smarcal1del/del and wt female mice (n=3/group) at 20°C and after 1 hour at 39.5°C. These libraries were sequenced using the whole transcriptome shotgun sequencing procedure.
Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression.
Sex, Specimen part, Cell line, Subject
View SamplesBiallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila, and mouse models, we show that the proteins encoded by SMARCAL1 orthologues localize to transcriptionally active chromatin and modulate gene expression. We also show that similar to SIOD patients, deficiency of the SMARCAL1 orthologues alone is insufficient to cause disease in fruit flies and mice although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.
Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression.
Sex, Specimen part
View SamplesSchimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder caused by biallelic mutations in SWI/SNF-related matrix associated actin-dependent regulator of chromatin, subfamily A-like protein 1 (SMARCAL1). Changes in gene expression appear to underlie the immunodeficiency and arteriosclerosis of SIOD; therefore, we hypothesized that SMARCAL1 deficiency alters renal gene expression to cause the focal segmental glomerulosclerosis (FSGS) of SIOD, and that these gene expression alterations would be comparable to those observed in isolated FSGS. We tested this hypothesis by gene expression microarray analysis.
Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia?
Sex
View SamplesSchimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder caused by biallelic mutations in SWI/SNF-related matrix associated actin-dependent regulator of chromatin, subfamily A-like protein 1 (SMARCAL1). Changes in gene expression appear to underlie the immunodeficiency and arteriosclerosis of SIOD; therefore, we hypothesized that SMARCAL1 deficiency alters renal gene expression to cause the focal segmental glomerulosclerosis (FSGS) of SIOD. We tested this hypothesis by transcriptome analysis and quantitative reverse transcription PCR (qRT-PCR) of an SIOD patient kidney, a genetic screen and immunofluorescence. These showed increased expression of genes in the Wnt and Notch signaling pathways in an SIOD patient kidney, interaction of Marcal1 with genes encoding components of the Wnt and Notch signaling pathways, and increased levels of unphosphorylated b-catenin and Notch1 intracellular domain (NICD) in the glomeruli of SIOD patient kidneys. Given that increased Wnt and Notch activity are established causes of FSGS, we hypothesize that SMARCAL1 deficiency increases the activity of one or both of these pathways to cause the renal disease of most SIOD patients. Overall design: Comparison of mRNA levels between the kidney tissue of a Schimke immuno-osseous dysplasia (SIOD) patient and an unaffected control
Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia?
No sample metadata fields
View Samples