Comparison of gene expression between T regulatory and T effector cells isolated from the pancreatic lesion of 3-4 wk old BDC2.5 tg NOD mice
Where CD4+CD25+ T reg cells impinge on autoimmune diabetes.
Age, Specimen part
View SamplesIntroduction: A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. Aim: We have investigated how microRNAs contribute to core clock and clock-controlled gene expression using mice in which microRNA biogenesis can be inactivated in the liver. Results: While the hepatic core clock was surprisingly resilient to microRNA loss, whole transcriptome sequencing uncovered widespread effects on clock ouput gene expression. Cyclic transcription paired with microRNA-mediated regulation was thus identified as a widespread phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only a few mRNA rhythms were actually generated by microRNAs. Finally, we pinpoint several microRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to microRNA regulation. Conclusion: Our study provides a comprehensive analysis of miRNA activity in shaping hepatic circadian gene expression and can serve as a valuable resource for further investigations into the regulatory roles that miRNAs play in liver gene expression and physiology. Overall design: RNA-Seq of rRNA-depleted total RNAs from two independent full time series around-the-clock of Dicer knockout and control mouse livers
MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale.
No sample metadata fields
View SamplesThe Mre11 complex (Mre11, Rad50, and Nbs1) and Chk2 have been implicated in the DNA damage response, an inducible process required for the suppression of malignancy. The Mre11 complex is predominantly required for repair and checkpoint activation in S phase, while Chk2 governs apoptosis. We examined the relationship between the Mre11 complex and Chk2 in the DNA damage response via the establishment of Nbs1B/B Chk2-/- and Mre11ATLD1/ATLD1 Chk2-/- mice. Chk2 deficiency did not modify the checkpoint defects or chromosomal instability of Mre11 complex mutants; however, the double mutant mice exhibited synergistic defects in DNA damage-induced p53 regulation and apoptosis. Nbs1B/B Chk2-/- and Mre11ATLD1/ATLD1 Chk2-/- mice were also predisposed to tumors. In contrast, DNA-PKcs deficient mice, in which G1-specific chromosome breaks are present, did not exhibit synergy with Chk2-/- mutants. These data suggest that Chk2 suppresses the oncogenic potential of DNA damage arising during S and G2 phases of the cell cycle.
Chk2 suppresses the oncogenic potential of DNA replication-associated DNA damage.
No sample metadata fields
View SamplesBacteria are extremely versatile organisms which rapidly adapt to changing environments. When Escherichia coli cells switch from planktonic growth to biofilm, flagellum formation is turned off, and the production of fimbriae and extracellular polysaccharides is switched on. Here we show that BolA protein is a new bacterial transcription factor which modulates the switch from planktonic to sessile lifestyle. BolA negatively modulates flagella biosynthesis and thus swimming capacity. Furthermore, BolA overexpression favors biofilm formation and involvesinvolving fimbriae-like adhesins and curli production. Our results unraveled for the first time that BolA is a protein with high affinity to DNA, involved in the regulation of several genes of E. coli at a genome-wide scale level. Moreover, this observation further demonstrated that the most significant targets of this protein involved a complex network of genes encoding proteins extremely necessary in biofilm development processes. Herein we propose that BolA is a motile/adhesive transcriptional switch, specifically involved in the transition between the planktonic and the attachment stage of biofilm formation process.
BolA is a transcriptional switch that turns off motility and turns on biofilm development.
No sample metadata fields
View SamplesE15.5 embryos were micro-disscted from Gata4 G295S mutant mice and littermate controls, RNA was isolated using Norgen total RNA isolation, and libraries were generated with the RNA TruSeq Stranded Total RNA kit. 50 base pair paired end reads were obtained on an illumina high seq 2500. Fastq files were aligned to the mouse genome using STAR aligner. QC was performed using RNASeQC and RSeQC. BAM files were processed using cufflinks pipeline. Overall design: The project aims to assess the differential gene expression at E15.5 between the outflow tracts of Gata4 G295S mutant embryos and wildtype littermate controls.
Developmental origins for semilunar valve stenosis identified in mice harboring congenital heart disease-associated <i>GATA4</i> mutation.
Specimen part, Subject
View SamplesAberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. Overall design: RNA-seq of SETD2 mutant and wild-type ccRCC cell lines.
Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma.
No sample metadata fields
View Sampleswe performed transcriptomic analysis of the RanBP9del1 mutant ovaries compared to wild type Overall design: explore the consequences of decreased nuclear actin on transcription
Nuclear Actin Is Required for Transcription during Drosophila Oogenesis.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2.
Specimen part, Cell line
View SamplesE protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity.
ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomic signatures of hepatocellular carcinoma derived from nonalcoholic Fatty liver disease.
Age, Specimen part, Disease
View Samples