Guillain-Barré syndrome (GBS) is an immune-mediated peripheral neuropathy that debilitates the voluntary and autonomous response of the patient. In this study the transcriptome of peripheral blood mononuclear cells from a GBS patient and her healthy twin were compared to discover possible correlates of disease progression and recovery. Overall design: Blood samples were collected simultaneously from the Guillain-Barré patient (A) and from her control healthy twin (B) at three different time points during disease progression from hospitalization in the intensive care unit (T1), passing to intermediate care (T2), and at conclusion of locomotion rehabilitation program when the patient was close to abandon the hospital (T3).
Expression of Early Growth Response Gene-2 and Regulated Cytokines Correlates with Recovery from Guillain-Barré Syndrome.
No sample metadata fields
View SamplesThe mammalian telomere-binding protein Rap1 was found to have additional non-telomeric functions, acting as a transcriptional cofactor and a regulator of the NF-kB pathway. Here, we assess the effect of disrupting mouse Rap1 in vivo, and report on its unanticipated role in metabolic regulation and body weight homeostasis. Rap1 inhibition causes dysregulation in hepatic as well as adipose function. In addition, using a separation-of-function allele, we show that the metabolic function of Rap1 is independent of its recruitment to TTAGGG binding elements found at telomeres, and at other interstitial loci.
Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity.
No sample metadata fields
View SamplesThe three-dimensional (3D) folding of the chromosomal fibre in the human interphase nucleus is an important, but poorly understood aspect of gene regulation. Especially basic principles of 3D chromatin and chromosome organisation are still elusive. In this paper, we quantitatively analyse the 3D structure of large parts of chromosomes 1 and 11 in the G1 nucleus of human cells and relate it to the human transcriptome map (HTM). Despite a considerable cell-to-cell variation, our results show that subchromosomal domains, which are highly expressed, are more decondensed, have a more irregular shape and are located in the nuclear interior compared to clusters of low expressed genes. These aspects of chromosome structure are shared by six different cell lines and therefore are independent of cell type specific differences in gene expression within the investigated domains. Systematic measurements show that there is little to no intermingling of chromatin from different parts of the same chromosome, indicating that the chromosomal fibre itself is a compact structure. Together, our results reveal several basic aspects of 3D chromosome architecture, which are related to genome function.
The three-dimensional structure of human interphase chromosomes is related to the transcriptome map.
No sample metadata fields
View SamplesThe anticarcinogenic activity of hydroxytyrosyl ethyl ether (HTy-Et) compared to its precursor hydroxytyrosol (HTy) has been studied in human Caco-2 colon adenocarcinoma cells.
Hydroxytyrosyl ethyl ether exhibits stronger intestinal anticarcinogenic potency and effects on transcript profiles compared to hydroxytyrosol.
Specimen part, Disease, Disease stage, Cell line
View SamplesFlowering time is a complex trait regulated by many genes that are integrated in different genetic pathways. Different genetic screenings carried out during the past decades have revealed an intrincated genetic regulatory network governing this trait. Efforts aimed at improving our understanding of how such genetic pathways respond to genetic and enviromental cues are needed.
The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering.
Age, Specimen part
View SamplesMicrophthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degrees. Sporadic and hereditary microphthalmos has been associated to heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, a transcription factor with an evolutionary conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment, in adult mice. In the trunk, Meis1 acts as a cofactor for genes of the Hox complex, mostly binding to Hox-Pbx target sequence on the DNA. By combining the analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIPseq and RNAseq approaches, we show that during the development of the optic cup, an Hox-free region, Meis1 binds instead to Hox/Pbx-independent Meis binding site, and coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating the expression of components of the Notch signalling pathway. Meis1 also controls the activity of genes responsible for human microphthalmia and eye patterning so that in Meis1-/- embryos, the eye size is reduced and boundaries among the different eye territories are shifted or blurred. We thus propose that Meis1 is at the core of a genetic network implicated in microphthalmia, itself representing an additional candidate for syndromic cases of these ocular malformations. Overall design: Transcriptomics and Meis1 Occupancy analysis on mouse isolated optic cups and ChIP data for histone methylation marks were obtained from about 100 eyes of E10.5 CD1 embryos.
Meis1 coordinates a network of genes implicated in eye development and microphthalmia.
No sample metadata fields
View SamplesLymphocytes represent basic components of vertebrate adaptive immune systems, suggesting the utility of non-mammalian models to define the molecular basis of their development and differentiation. Our forward genetic screens in zebrafish for recessive mutations affecting early T cell development revealed several major genetic pathways. The identification of lineage-specific transcription factors and specific components of cytokine signaling and DNA replication/repair pathways known from studies of immuno-compromised mammals provided an evolutionary cross-validation of the screen design. Unexpectedly, however, certain pre-mRNA processing factor genes, including tnpo3, encoding a regulator of alternative splicing, were also found to play a specific role in early T cell development. In both zebrafish and mouse, TNPO3 deficiency impairs intrathymic T cell differentiation, illustrating evolutionarily conserved and cell type-specific functions of certain pre-mRNA processing factor. Overall design: Taking advantage of the apparent evolutionary conservation of lymphocyte-based immunity, we conducted genetic screens in zebrafish aimed at identifying novel regulators of T lymphocyte development. Apart from mutations in genes encoding lymphoid lineage-specific transcription factors, and components of cytokine signaling and DNA replication/repair pathways, mutations in genes encoding pre-mRNA processing factors were also found. To examine the molecular consequences, transcriptome analyses were conducted for three mutants, snapc3, lsm8, tnpo3.
Forward Genetic Screens in Zebrafish Identify Pre-mRNA-Processing Pathways Regulating Early T Cell Development.
No sample metadata fields
View SamplesWe performed a transcriptomic analysis of Pi-starvation and recovery after resupplying Pi in Arabidopsis thaliana (Columbia-0) wild type plants and double mutant spx1,spx2. Results show that SPX1 is a Pi-dependent inhibitor of the transcription factor PHR1, a central regulatory protein in the control of transcriptional responses to Pi starvation.
SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis.
Age, Specimen part
View SamplesTo gain further insights into the role of the transcriptome deregulation in the transition from a normal plasma cell (NPC) to a clonal PC and from an indolent clonal PC to a malignant PC, we performed gene expression profiling in 20 patients with MGUS, 33 with high-risk SMM and 41 with MM. The analysis showed that 126 genes were differentially expressed in MGUS, SMM and MM as compared to NPC. Interestingly, 17 and 9 out of the 126 significant differentially expressed genes were small nucleolar RNA molecules (snoRNA) and zinc finger proteins. GADD45A was the most significant up-regulated gene in clonal PC compared to NPC. Several proapoptotic genes (AKT1 and AKT2) were downregulated and antiapoptotic genes (APAF1 and BCL2L1) were upregulated in MM, both symptomatic and asymptomatic, compared to MGUS. Myc mediated apoptosis signaling is one of the top canonical pathways differentiating the asymptomatic and symptomatic myeloma. When we looked for those genes progressively modulated through the evolving stages of monoclonal gammopathies, eight snoRNA showed a progressive increase while APAF1, VCAN and MEGF9 exhibited a progressive downregulation in the transition from MGUS to SMM and to MM. In conclusion, our data show that although MGUS, SMM and MM are not clearly distinguishable groups according to their GEP, several signaling pathways and genes were significant deregulated in the different steps of transformation process.
Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.
Specimen part, Cell line, Treatment
View Samples