This SuperSeries is composed of the SubSeries listed below.
Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.
No sample metadata fields
View SamplesAnalysis of genes that were differentially expressed in mutant VUB03_DM1 as compared to controls VUB01 and SA01 Neural Precursor cells
Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.
No sample metadata fields
View SamplesAnalysis of genes that were differentially expressed in mutant VUB03_DM1 as compared to controls VUB01 and SA01 undifferentiated hES cells
Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.
No sample metadata fields
View SamplesAnalysis of genes that were differentially expressed in mutant VUB03_DM1 as compared to controls VUB01 and SA01 Mesodermal Precursors Cells.
Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.
No sample metadata fields
View SamplesHere we propose the direct conversion of human somatic cells into naive induced pluripotent cells (niPSC). Dataset: 7 expanded niPSC lines (4 from BJ cells, 1 from HFF-1, 1 from WI38, 1from IMR90), 1 freshly-isolated primary colonies of niPSC from BJ, 1 established naive embryonic line H9, 1 primed induced pluripotent cell line (from BJ), 1 sample of BJ fibroblasts, 1 sample of WI38 fibroblasts, 1 sample IMR90 fibroblasts.
Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics.
No sample metadata fields
View SamplesHuman medulloblastoma (MB) can be segregated into four major categories based on gene expression patterns: Hedgehog (HH) subtype, Wnt subtype, Group 3, and Group 4. However, they all exhibit strikingly different gene expression profiles from Atypical Teratoid/Rhabdoid Tumor (AT/RT). We re-analyzed published gene expression microarray dataset of pediatric brain tumors to identify a gene expression profile that clearly distinguished human AT/RT from human MB. We used this profile, choosing only genes that have clear murine orthologs, to compare tumors from Snf5F/Fp53L/LGFAP-Cre mice (in C57Bl/6 strain background) with MB from Ptc1+/- mice (in mixed C57Bl/6 and 129Sv strain background). Snf5F/Fp53L/LGFAP-Cre tumors are clearly very different from mouse MB and the markers that distinguish human AT/RT from human MB also distinguish the mouse tumors.
Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53.
No sample metadata fields
View SamplesLymphatic endothelial cells were grown under normoxia, hypoxia (1% 0xygen) and conditioned medio from NSLCN growth under normoxia or hypoxia. Gene expression was measured and comparition between samples performed
Hypoxia alters the adhesive properties of lymphatic endothelial cells. A transcriptional and functional study.
No sample metadata fields
View SamplesWe report a method for deriving oligodendrocyte lineage cells from human pluripotent stem cells (hPSCs) in three-dimensional (3D) culture called human oligodendrocyte spheroids (hOLS). To characterize oligodendrocyte-lineage cells in hOLS, we isolated O4+ cells by immunopanning and performed deep single cell RNA sequencing. We sequenced 295 cells and compared their profiles to unsorted cells isolated from primary human fetal cortex, primary human adult cortex, and hCS. Clustering of all cells using the t-distributed stochastic neighbor embedding (tSNE) approach revealed a distinct populations of SOX10+ oligodendrocytes, within which the O4+ cells derived from hOLS clustered most closely to oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes from the primary human adult cortical tissue. Additionally, subpopulations of OPCs, newly formed oligodendrocytes, and myelinating oligodendrocytes derived were observed in the hOLS-derived cluster. To further assess the state of oligodendrocyte-lineage cells in hOLS, we performed a Monocle analysis which revealed a spectrum of oligodendrocyte-lineage stages in hOLS ranging from dividing cells that closely resembled primary OPCs to mature cells that closely resembled primary oligodendrocytes. Overall design: Examination of gene expression in single oligodendrocyte-lineage cells derived from human pluripotent stem cells in three-dimensional culture
Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures.
Subject
View SamplesWe have characterized a mutation affecting the Arabidopsis EARLY IN SHORT DAYS 7 (ESD7) gene encoding the catalytic subunit of the DNA polymerase epsilon (e), AtPOL2A. esd7-1 mutations causes early flowering independently of photoperiod, shortened inflorescence internodes and altered leaf and root development. esd7-1 was a hypomorphic allele whereas KO alleles displayed an embryo-lethal phenotype. The SAM and the RAM in the esd7-1 seedlings were found to exhibit an altered disposition that might correlate with the abnormal expression pattern of SAM and RAM marker genes. esd7-1 showed higher sensitivity to DNA damaging reagents than wild type plants and altered expression of genes involved in DNA repair mechanisms by homologous recombination. Moreover, esd7 early flowering phenotype requires functional FT and SOC1 proteins and might be also related to the mis-regulation of AG and AG-like gene expression found in esd7. Loci involved in the modulation of the chromatin structural dynamics, such as TFL2 and EBS, which negatively regulate FT expression, were found to interact genetically with ESD7, and the carboxy terminus of ESD7 interacted with TFL2 in vitro. Besides, fasciata2 (fas2) mutations suppressed esd7 early flowering phenotype and INCURVATA 2 (ICU2) was found to be epistatic to ESD7. Discrete regions of the chromatin of FT and AG loci were enriched in activating epigenetic marks in the esd7-1 mutant. We concluded that ESD7 might be participating in processes involved in chromatin-mediated cellular memory.
EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing.
Specimen part
View SamplesChromosome dosage plays a significant role in reproductive isolation and speciation in both plants and animals, but underlying mechanisms are largely obscure. Transposable elements can promote hybridity through maternal small RNA, and have been postulated to regulate dosage response via neighboring imprinted genes. Here, we show that a highly conserved microRNA in plants, miR845, targets the tRNAMet primer-binding site (PBS) of LTR-retrotransposons in Arabidopsis pollen, and triggers the accumulation of 21 to 22-nucleotide small RNA in a dose dependent fashion via RNA polymerase IV. We show that these epigenetically activated small-interfering RNAs (easiRNAs) mediate hybridization barriers between diploid seed parents and tetraploid pollen parents (“the triploid block”), and that natural variation for miR845 may account for “endosperm balance” allowing formation of triploid seeds. Targeting the PBS with small RNA is a common mechanism for transposon control in mammals and plants, and provides a uniquely sensitive means to monitor chromosome dosage and imprinting in the developing seed. Overall design: RNA-seq of Arabidopsis pollen
Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis.
Specimen part, Subject
View Samples