For these data, we analyzed hippocampal gene expression of nine control and 22 AD subjects of varying severity on 31 separate microarrays. We then tested the correlation of each gene's expression with MiniMental Status Examination (MMSE) and neurofibrillary tangle (NFT) scores across all 31 subjects regardless of diagnosis. These tests revealed a major transcriptional response comprising thousands of genes significantly correlated with AD markers. Several hundred of these genes were also correlated with AD markers across only control and incipient AD subjects (MMSE > 20).
Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses.
Sex, Age
View SamplesThe purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents that changed expression in response to the burrowing of live scabies mites.
Sarcoptes scabiei mites modulate gene expression in human skin equivalents.
Specimen part, Treatment
View SamplesPlant respiration responses to elevated growth [CO2] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO2] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole-plant photoassimilate availability and growth, elevated [CO2] induces transcriptional reprogramming and a stimulation of nighttime respiration in leaf primordia, expanding leaves, and mature leaves of Arabidopsis thaliana. In primordia, elevated [CO2] altered transcript abundance, but not for genes encoding respiratory proteins. In expanding leaves, elevated [CO2] induced greater glucose content and transcript abundance for some respiratory genes, but did not alter respiratory CO2 efflux. In mature leaves, elevated [CO2] led to greater glucose, sucrose and starch content, plus greater transcript abundance for many components of the respiratory pathway, and greater respiratory CO2 efflux. Therefore, growth at elevated [CO2] stimulated dark respiration only after leaves transitioned from carbon sinks into carbon sources. This coincided with greater photoassimilate production by mature leaves under elevated [CO2] and peak respiratory transcriptional responses. It remains to be determined if biochemical and transcriptional responses to elevated [CO2] in primordial and expanding leaves are essential prerequisites for subsequent alterations of respiratory metabolism in mature leaves.
Developmental stage specificity of transcriptional, biochemical and CO2 efflux responses of leaf dark respiration to growth of Arabidopsis thaliana at elevated [CO2].
No sample metadata fields
View SamplesExon and expression analysis of HeLa cells after knockdown of SON
Son maintains accurate splicing for a subset of human pre-mRNAs.
Cell line
View SamplesTranscriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.
Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.
Age, Specimen part
View SamplesGenetic Manipulation to increase number of ISC (intestinal stem cells) and gene expression profiling to identify ISC regulators
Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reprogramming of the microRNA transcriptome mediates resistance to rapamycin.
Specimen part, Cell line
View SamplesThe mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation. Inhibitors of mTOR are being evaluated as anti-tumor agents. Given the emerging role of microRNAs (miRNAs) in tumorgenesis we hypothesized that miRNAs could play important roles in the response of tumors to mTOR inhibitors. Rapamycin resistant myogenic cells developed by long-term rapamycin treatment showed extensive reprogramming of miRNAs expression, characterized by up-regulation of the mir-17~92 and related clusters and down-regulation of tumor-suppressor miRNAs. Antagonists of oncogenic miRNA families and mimics of tumor suppressor miRNAs (let-7) restored rapamycin sensitivity in resistant tumor cells. This study identified miRNAs as new downstream components of the mTOR-signaling pathway, which may determine the response of tumors to mTOR inhibitors.
Reprogramming of the microRNA transcriptome mediates resistance to rapamycin.
Specimen part, Cell line
View SamplesB-methylthiolation of the Escherichia coli Ribosomal Protein S12 Regulates Anaerobic Gene Expression.
A proteomic and transcriptomic approach reveals new insight into beta-methylthiolation of Escherichia coli ribosomal protein S12.
No sample metadata fields
View SamplesPrimary skin fibroblasts from HGPS patients and an age-matched control wild-type individuals were challenged in a standard transformation assay by retroviral introduction of TERT (T), V12-HRAS (R) and SV40 large and small T antigens (S). TERT-Immortalized cell lines from the same sources were also generated.
Transformation resistance in a premature aging disorder identifies a tumor-protective function of BRD4.
Specimen part
View Samples