There are no effective treatments or clinical response markers for systemic sclerosis (SSc). We sought to assess the potential of novel imaging biomarkers and gene expression profiling approaches in a clinical trial of the tyrosine kinase inhibitor dasatinib in SSc patients with interstitial lung disease (SSc-ILD).
Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Medullary Breast Carcinoma, a Triple-Negative Breast Cancer Associated with BCLG Overexpression.
Disease, Disease stage
View SamplesGene expression was compared between medullary breast carcinoma (MBC) and non medullary basal-like breast carcinoma (non-MBC BLC).
Medullary Breast Carcinoma, a Triple-Negative Breast Cancer Associated with BCLG Overexpression.
Disease, Disease stage
View SamplesThe RSK2 gene is responsible for Coffin-Lowry syndrome, an X-linked monogenic disease associating severe learning deficit andassociated to typical facial and digital abnormalities and skeletal changes. Craniofacial and dental anomalies encountered in this rare disease have been poorly characterized.
RSK2 is a modulator of craniofacial development.
No sample metadata fields
View SamplesAlterations of chromatin modifiers are frequent in cancer but their functional consequences remain often unclear. Focusing on the Polycomb protein EZH2 that deposits H3K27me3 mark, we showed that its high expression in solid tumors is a consequence, and not a cause, of tumorigenesis. In mouse and human models, EZH2 is dispensable for prostate cancer development and restrains breast tumorigenesis. High EZH2 expression in tumors results from a tight coupling to proliferation to ensure H3K27me3 homeostasis. However, this process is malfunctioning in breast cancer. Low EZH2 expression relative to proliferation and mutations in Polycomb genes are actually of poor prognosis and occur in metastases. We show that while altered EZH2 activity consistently modulates a subset of its target genes, it promotes a wider transcriptional instability. Importantly, transcriptional changes consequent to EZH2 loss are predominantly irreversible. Our study provides an unexpected understanding of EZH2's contribution to solid tumors with important therapeutic implications.
Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis.
Specimen part
View SamplesPolycomb Repressive Complex 2 (PRC2) plays a key role in controlling transcriptional repression. It is thought to act at the level of the chromatin, where its enzymatic subunits Ezh1 and Ezh2 catalyse the di/tri-methylation of histone H3 on its lysine 27 (H3K27me3).
Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis.
Specimen part
View SamplesThe aim of this study was to characterize the stroma displayed by different models of breast cancer tumors in mice. For this purpose, transcriptomic and flow cytometry analyses on murine populations were performed in a series of 25 PDXs and 2 most commonly used GEMs (MMTV-PyMT and MMTV-erBb2). Specifically, macrophages from 5 models were sorted and profiled by gene expression and phenotypically characterized by flow cytometry.
Characterization of Breast Cancer Preclinical Models Reveals a Specific Pattern of Macrophage Polarization.
Specimen part, Subject
View SamplesAcquired resistance to endocrine therapy occurs with high frequency in patients with luminal breast cancer (LBC). We report here the establishment of four patient-derived xenograft models of LBC with acquired resistance in vivo to tamoxifen and estrogen deprivation.
Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts.
Specimen part
View SamplesGlucocorticoids (GCs) are steroid hormones widely used as pharmaceutical interventions, which act mainly by regulating gene expression levels. A large fraction of patients (~30%), especially those of African descent, show a weak response to treatment. To interrogate the contribution of variable transcriptional response to inter-ethnic differences, we measured in vitro lymphocyte GC sensitivity (LGS) and transcriptome-wide response to GCs in peripheral blood mononuclear cells (PBMCs) from African-American and European-American healthy donors. We found that transcriptional response after 8hrs treatment was significantly correlated with variation in LGS within and between populations. We found that NFKB1, a gene previously found to predict LGS within populations, was more strongly downregulated in European-Americans on average. NFKB1 could not completely explain population differences, however, and we found an additional 177 genes with population differences in the average log2 fold change (FDR<0.05), most of which also showed a weaker transcriptional response in AfricanAmericans. These results suggest that inter-ethnic differences in GC sensitivity reflect variation in transcriptional response at many genes, including regulators with large effects (e.g. NFKB1) and numerous other genes with smaller effects.
Inter-ethnic differences in lymphocyte sensitivity to glucocorticoids reflect variation in transcriptional response.
Sex, Age, Specimen part, Treatment
View SamplesThe aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.
Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).
Sex, Age, Specimen part
View Samples