It is currently unknown how extensively the double-stranded RNA binding protein Staufen (Stau)1 is utilized by mammalian cells to regulate gene expression. To date, Stau1 binding to the 3 untranslated region (3UTR) of ARF1 mRNA has been shown to target ARF1 mRNA for Stau1-mediated mRNA decay (SMD). ARF1 SMD depends on translation and recruitment of the nonsense-mediated mRNA decay factor Upf1 to the ARF1 3UTR by Stau1. Here, we use microarray analyses to examine changes in the abundance of cellular mRNAs that occur when Stau1 is depleted. Results indicate that 1.1% and 1.0% of the 11,569 HeLa-cell transcripts that were analyzed are, respectively, upregulated and downregulated at least two-fold in three independently performed experiments. Additionally, we localize the Stau1 binding site to the 3UTR of four mRNAs that we define as natural SMD targets. Together, these and substantiating results suggest that Stau1 influences the expression of a wide variety of physiologic transcripts and metabolic pathways.
Staufen1 regulates diverse classes of mammalian transcripts.
No sample metadata fields
View SamplesRenal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e. distal convoluted tubule (DCT) and connecting tubule (CNT) and, the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.
Molecular clock is involved in predictive circadian adjustment of renal function.
Sex, Specimen part
View SamplesWe report that the HF/HS-mediated functional enrichment of genes of immunity and inflammation is driven toward normal by the AOF supplementation Obesity may not constantly associate with metabolic disorders and mortality later in life, raising the challenging concept of healthy obesity. Here, high fat-high sucrose (HF/HS) feeding produces hyperglycaemia and hypercholesterolemia, increases oxidative stress, elevates endotoxemia, expands adipose tissue (with enlarged adipocytes, macrophage infiltration and accumulation of cholesterol and oxysterols), and reduces lifespan of obese mice. Despite persistence of obesity, supplementation with an antioxidant formulation normalizes plasma lipids and endotoxemia, prevents macrophage recruitment in adipose tissue, reduces adipose accumulation of cholesterol and cholesterol oxides, and extends lifespan. The HF/HS-mediated functional enrichment of genes of immunity and inflammation (in particular response to lipopolysaccharides) is driven towards normal by the antioxidant formulation. It is concluded that the limitation of immune cell infiltration in adipose tissue on the long term by an antioxidant formulation can increase lifespan independently of body weight and fat storage. It constitutes the hallmark of a healthy adiposity trait. Overall design: Examination of the expression profile of mice adipose tissues fed either standard (Std), High-fat/high-sucrose (HF/HS) or HF/HS + antioxidant formulation (AOF) for 180 days
Healthy adiposity and extended lifespan in obese mice fed a diet supplemented with a polyphenol-rich plant extract.
Age, Specimen part, Cell line, Subject
View SamplesIn order to investigate the impact of MMP-14 (MT1-MMP) and three-dimensional (3D) culture conditions on the transcriptomes of a human breast adenocarcinoma cell line, we performed a microarray analysis from RNAs isolated from MCF-7 cells expressing either an empty vector (CTRL) or human MMP-14 cDNA (MT1) in monolayer (2D) and 3D collagen (3D Col) growth conditions.
A membrane-type-1 matrix metalloproteinase (MT1-MMP)-discoidin domain receptor 1 axis regulates collagen-induced apoptosis in breast cancer cells.
Cell line
View SamplesThe heart responds to pathological overload through myocyte hypertrophy. In our study, we found that this response is regulated by cardiac fibroblasts via a novel paracrine mechanism involving plasma membrane calcium ATPase 4 (PMCA4). PMCA4 deletion in mice, both systemically and specifically in fibroblasts, reduces the hypertrophic response to pressure overload; however, knocking out PMCA4 specifically in cardiomyocytes does not produce this effect. Mechanistically, our microarray data on fibroblasts isolated from PMCA4 WT and PMCA4 knockout animals showed that cardiac fibroblasts lacking PMCA4 produce higher levels of secreted frizzled related protein 2 (sFRP2), which inhibits the hypertrophic response in neighbouring cardiomyocytes.
The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy.
Sex, Age, Specimen part
View SamplesGender dimorphism exists in the physiological response to diet and other environmental factors. Trans-hydrogenated fatty acid (TFA) intake is associated with an increase in coronary heart disease (CHD), and gender differences in the incidence of CHD are well documented. Neonatal administration of Monosodium Glutamate (MSG) causes stunted heart growth and hypoplasticity; and gender dimorphism at the growth hormone axis has been demonstrated in MSG-treated rodents. The identification of gender dimorphism in cardiac nutrigenomics may provide the basis for gender-specific medicine in the future.
Sex-dimorphism in cardiac nutrigenomics: effect of trans fat and/or monosodium glutamate consumption.
Sex, Specimen part
View SamplesMurine Cytomegalovirus (MCMV) infection leads to the activation of various immune cells, including dendritic cells (DCs) and Natural Killer (NK) cells. This activation is partly driven by innate cytokines including IFN-I, which are induced early after infection. The objective was to address the role of different innate cytokines in shaping DC subsets and NK cell responses, in particular the role of cell intrinsic responses to IFN-I.
Differential responses of immune cells to type I interferon contribute to host resistance to viral infection.
Specimen part
View SamplesDendritic cells (DCs) are a complex group of cells which play a critical role in vertebrate immunity. They are subdivided into conventional DC (cDC) subsets (CD11b and CD8alpha in mouse) and plasmacytoid DCs (pDCs). Natural killer cells are innate lymphocytes involved in the recognition and killing of abnormal self cells, including virally infected cells or tumor cells. DCs and NK cells are activated very early upon viral infections and regulate one another. However, the global responses of DC and NK cells early after viral infection in vivo and their molecular regulation are not entirely characterized. The goal of this experiment was to use global gene expression profiling to assess the global genetic reprogramming of DC and NK cells during a viral infection in vivo, as compared to B lymphocytes, and to investigate the underlying molecular mechanisms
Differential responses of immune cells to type I interferon contribute to host resistance to viral infection.
Sex, Specimen part
View SamplesThe injection of the pathogen-associated molecular pattern Polyinosinic-polycytidylic acid (poly(I:C)) leads to the activation of various immune cells, including dendritic cells (DCs) and Natural Killer (NK) cells. This activation is due to different innate cytokines produced early after injection, in particular IFN-I. The objective of the study was to compare the pattern of expression of IFN-I stimulated genes between DC and NK cells.
Differential responses of immune cells to type I interferon contribute to host resistance to viral infection.
Specimen part
View SamplesInhibition of ZNF768 function was achieved by conditional over expression expression of the C-terminal zinc finger of ZNF768 for 12h. For preparation of total RNA cells were resuspended in TRIzol reagent (Life Technologies) at 0.9Mio/ml and snap-frozen. After thawing RNA was extracted from 0.4ml of TriZol lysate using the direct-zol RNA Miniprep (Zymo Research, Irvine CA, USA) as described in the manufacturer's protocol. RNA was assessed for purity by UV-vis spectrometry (Nanodrop) and for integrity by Bioanalyzer (Agilent Bioanalyzer 2100, Agilent, Santa Clara USA)). RNA was of high purity (abs. 260/280 >1.9, abs 269/239>2.1) and integrity (Bioanalyzer RIN>9 ) and thus used for further processing. For production of RNA-seq libraries total RNA was DNAse treated (dsDNAse, Fermentas) and 100 ng of this RNA was processed with a strand-specific protocol (RNA-seq complete kit, NuGEN, San Carlos, USA). In brief the RNA was reverse transcribed to cDNA with a reduced set of hexamer primers, avoiding excessive representation of rRNA in the cDNA. Second strand cDNA synthesis was done in presence of dUTP. After ultrasonic fragmentation of the cDNA and end repair, Illumina-compatible adapter were ligated. Adapters contained uracil in one strand, allowing complete digestion of the second-strand derived DNA. After strand selection the libraries were amplified, assessed for correct insert size on the Agilent Bioanalyser and diluted to 10nM. Barcoded libraries were mixed in equimolar amounts and sequenced on an Illumina HiSeq1500 in single-read mode with a read length of 100 b. Overall design: ZNF768-deltaN
MIR sequences recruit zinc finger protein ZNF768 to expressed genes.
Treatment, Subject
View Samples