Analysis of rapamycin effects on white adipose tissue at gene expression level. The hypothesis tested in the present study was that rapamycin could modify immune cell composition and inflammatory state of the adipose tissue of obese mice.
Beneficial metabolic effects of rapamycin are associated with enhanced regulatory cells in diet-induced obese mice.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor.
Cell line, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Patterns of histone H3 lysine 27 monomethylation and erythroid cell type-specific gene expression.
Specimen part, Cell line
View SamplesIn addition to the glucocorticoids, the glucocorticoid receptor (GR) is regulated by post-translational modifications, including SUMOylation. We have analyzed how SUMOylation influences the activity of endogenous GR target genes and the receptor chromatin binding by using isogenic HEK293 cells expressing wild-type GR (wtGR) or SUMOylation-defective GR (GR3KR). Gene expression profiling revealed that both dexamethasone up- and down-regulated genes are affected by the GR sumoylation and that the affected genes are significantly associated with pathways of cellular proliferation and survival. The GR3KR-expressing cells proliferated more rapidly and their anti-proliferative response to dexamethasone was less pronounced than in the wtGR-expressing cells. ChIP-seq analyses indicated that the SUMOylation modulates the chromatin occupancy of GR on several loci associated with cellular growth in a fashion which parallels with their differential dexamethasone-regulated expression between the two cell lines. Moreover, genome-wide SUMO-2/3 marks, which were generally associated with active chromatin, showed markedly higher overlap with the wtGR cistrome than with the GR3KR cistrome. In sum, our results indicate that the SUMOylation does not simply repress the GR activity, but regulates the activity of the receptor in a target locus selective fashion, playing an important role in controlling the GR activity on genes influencing cell growth.
SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor.
Cell line, Treatment, Time
View SamplesIn addition to the glucocorticoids, the glucocorticoid receptor (GR) is regulated by post-translational modifications, including SUMOylation. We have analyzed how SUMOylation influences the activity of endogenous GR target genes and the receptor chromatin binding by using isogenic HEK293 cells expressing wild-type GR (wtGR) or SUMOylation-defective GR (GR3KR). Gene expression profiling revealed that both dexamethasone up- and down-regulated genes are affected by the GR sumoylation and that the affected genes are significantly associated with pathways of cellular proliferation and survival. The GR3KR-expressing cells proliferated more rapidly and their anti-proliferative response to dexamethasone was less pronounced than in the wtGR-expressing cells. ChIP-seq analyses indicated that the SUMOylation modulates the chromatin occupancy of GR on several loci associated with cellular growth in a fashion which parallels with their differential dexamethasone-regulated expression between the two cell lines. Moreover, genome-wide SUMO-2/3 marks, which were generally associated with active chromatin, showed markedly higher overlap with the wtGR cistrome than with the GR3KR cistrome. In sum, our results indicate that the SUMOylation does not simply repress the GR activity, but regulates the activity of the receptor in a target locus selective fashion, playing an important role in controlling the GR activity on genes influencing cell growth.
SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor.
Cell line, Treatment, Time
View SamplesERYTHROID CELL-TYPE SPECIFIC GENE EXPRESSION
Patterns of histone H3 lysine 27 monomethylation and erythroid cell type-specific gene expression.
Cell line
View SamplesDifferentiation of muscle tissue is regulated by a complex network of transcription factors. The MEF2 family of transcription factors are important players in muscle development and differentiation.
MEF2 transcription factors regulate distinct gene programs in mammalian skeletal muscle differentiation.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Stability of gene expression and epigenetic profiles highlights the utility of patient-derived paediatric acute lymphoblastic leukaemia xenografts for investigating molecular mechanisms of drug resistance.
Sex
View SamplesBackground: Patient-derived tumour xenografts are an attractive model for preclinical testing of anti-cancer drugs. Insights into tumour biology and biomarkers predictive of responses to chemotherapeutic drugs can also be gained from investigating xenograft models. As a first step towards examining the equivalence of epigenetic profiles between xenografts and primary tumours in paediatric leukaemia, we performed genome-scale DNA methylation and gene expression profiling on a panel of 10 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) tumours that were stratified by prednisolone response. Results: We found high correlations in DNA methylation and gene expression profiles between matching primary and xenograft tumour samples with Pearsons correlation coefficients ranging between 0.85 and 0.98. In order to demonstrate the potential utility of epigenetic analyses in BCPALL xenografts, we identified DNA methylation biomarkers that correlated with prednisolone responsiveness of the original tumour samples. Differential methylation of CAPS2, ARHGAP21, ARX and HOXB6 were confirmed by locus specific analysis. We identified 20 genes showing an inverse relationship between DNA methylation and gene expression in association with prednisolone response. Pathway analysis of these genes implicated apoptosis, cell signalling and cell structure networks in prednisolone responsiveness. Conclusions: The findings of this study confirm the stability of epigenetic and gene expression profiles of paediatric BCP-ALL propagated in mouse xenograft models. Further, our preliminary investigation of prednisolone sensitivity highlights the utility of mouse xenograft models for preclinical development of novel drug regimens with parallel investigation of underlying gene expression and epigenetic responses associated with novel drug responses.
Stability of gene expression and epigenetic profiles highlights the utility of patient-derived paediatric acute lymphoblastic leukaemia xenografts for investigating molecular mechanisms of drug resistance.
Sex
View SamplesHM1, HP1a-/-, and HP1b-/- ESC transcriptomes were generated to determine whether depletion of these HP1 proteins influences gene and/or retroelement expression Overall design: mRNA profiles of HP1a and HP1b Knockouts and its corresponding wildtype
Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells.
Specimen part, Subject
View Samples