This SuperSeries is composed of the SubSeries listed below.
Cyclodextrin protects podocytes in diabetic kidney disease.
Cell line
View SamplesAnalysis of gene expression changes in differentiated human podocytes treated with the serum from patients with (DKD+) or without (DKD-) diabetic kidney disease when compared to normal subjects (C). The hypothesis is that the three groups can be distinghed by their differential gene expression pattern. The results obtained revealed important information regarding differences in gene expression in human podocytes treated with the serum from patients with (DKD+) or without (DKD-) diabetic kidney disease when compared to normal subjects (C).
Cyclodextrin protects podocytes in diabetic kidney disease.
Cell line
View SamplesWe assessed the gene expression profile of purified CD205+CD8+ Dendritic Cells isolated from murine spleens.
NOD2 modulates immune tolerance via the GM-CSF-dependent generation of CD103<sup>+</sup> dendritic cells.
Sex, Age, Specimen part
View SamplesAcute myeloid leukemia (AML) is associated with poor clinical outcome and the development of more effective therapies is urgently needed. G protein-coupled receptors (GPCRs) represent attractive therapeutic targets, accounting for approximately 30% of all targets of marketed drugs. Using next-generation sequencing, we studied the expression of 772 GPCRs in 148 genetically diverse AML specimens, normal blood and bone marrow cell populations as well as cord blood-derived CD34-positive cells. Among these receptors, 30 are overexpressed and 19 are downregulated in AML samples compared with normal CD34-positive cells. Upregulated GPCRs are enriched in chemokine (CCR1, CXCR4, CCR2, CX3CR1, CCR7 and CCRL2), adhesion (CD97, EMR1, EMR2 and GPR114) and purine (including P2RY2 and P2RY13) receptor subfamilies. The downregulated receptors include adhesion GPCRs, such as LPHN1, GPR125, GPR56, CELSR3 and GPR126, protease-activated receptors (F2R and F2RL1) and the Frizzled family receptors SMO and FZD6. Interestingly, specific deregulation was observed in genetically distinct subgroups of AML, thereby identifying different potential therapeutic targets in these frequent AML subgroups. Overall design: Total healthy bone marrow was sorted to isolate distinct cell populations. RNA-Seq analysis was performed on sorted cells to determine gene expression profile of healthy bona marrow subpopulations.
Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets.
Specimen part, Subject
View SamplesGene expression profiles from 280 formalin-fixed and paraffin embedded normal and tumor samples of four cancer types
Regulatory T-cell Genes Drive Altered Immune Microenvironment in Adult Solid Cancers and Allow for Immune Contextual Patient Subtyping.
Sex, Age, Specimen part
View SamplesMM1S cells have been cultured under normoxic and hypoxic conditions, and gene expression profiling has been performed using the Affymetrix Human Genome U133 Plus 2.0 array.
Metabolic signature identifies novel targets for drug resistance in multiple myeloma.
Cell line
View SamplesThe tumoral clone of Waldenstrms macroglobulinemia (WM) shows a wide morphological heterogeneity which ranges from B-lymphocytes (BL) to plasma cells (PC). By means of genome-wide expression profiling we have been able to identify genes exclusively deregulated in BL and PC from WM, but with a similar expression pattern in their corresponding cell-counterparts from CLL and MM, as well as normal individuals. The differentially expressed genes have important functions in B-cell differentiation and oncogenesis. Thus, two of the genes down-regulated in WM-BL were IL4R, which plays a relevant role in CLL B cell survival, and BACH2 that participates in the development of class-switched PC. Interestingly, one of the up-regulated genes in WM-BL was IL6. A set of 4 genes was able to discriminate clonal B-lymphocytes from WM and CLL: LEF1 (WNT/catenin pathway), MARCKS, ATXN1 and FMOD. We also found deregulation of genes involved in plasma cell differentiation such as PAX5 which was overexpressed in WM-PC, and IRF4 and BLIMP1 which were underexpressed. In addition, three of the target genes activated by PAX5 -CD79, BLNK and SYK- were up-regulated in WM-PC. In summary, these results indicate that both PC and BL from WM are genetically different from the MM and CLL cell-counterpart.
Gene expression profiling of B lymphocytes and plasma cells from Waldenström's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals.
No sample metadata fields
View SamplesNucleosomal incorporation of specialized histone variants is an important mechanism to generate different functional chromatin states. Here we report the identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. Their mRNAs are found in certain human cell lines, in addition to several normal and malignant human tissues. In keeping with their primate-specificity, H3.X and H3.Y are detected in different brain regions. Transgenic H3.X and H3.Y proteins are stably incorporated into chromatin in a similar fashion to the known H3 variants. Importantly, we demonstrate biochemically and by mass spectrometry that endogenous posttranslationally modified H3.Y protein exists in vivo, and that stress-stimuli, such as starvation and cellular density, increase the abundance of H3.Y-expressing cells. Global transcriptome analysis revealed that knock-down of H3.Y affects cell growth and leads to changes in the expression of many genes involved in cell cycle control. Thus, H3.Y is a novel histone variant involved in the regulation of cellular responses to outside stimuli.
Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View Samples