To understand the interplay between cancer and stroma, we performed single cell RNA-sequencing of PDAC cells admixed with stromal fibroblasts and defined different single cell populations with varying levels of proliferative and metastatic transcriptional states. PDAC cell behavior in vitro and in vivo on these phenotypic axes could be tuned with the proportion of stromal fibroblasts. These cell types were identified in human pancreatic tumors, and specific subpopulations were associated with worsened outcomes. Overall design: 92 single PDAC cells and 92 single CAF cells were micromanipulated and prepared for sequencing (23 of each cell type from four culture ratios). The 24th sample from each cell type-culture condition combination is a population control obtained by micromanipulating 100 cells of the given type from the given culture condition and preparing it as if it were a single cell, giving a total of 96 PDAC samples and 96 CAF samples. During the course of library construction, 3 samples were lost, all PDAC cells from the 30:70 condition (two single cells and the population control), leaving 93 total PDAC samples and 96 total CAF samples.
Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer.
Specimen part, Subject
View SamplesIn this experiment we compared total RNA from two commonly used choriocarcinoma cell lines, JEG3 and BeWo, to identify differentially expressed transcripts.
Microarray analysis of BeWo and JEG3 trophoblast cell lines: identification of differentially expressed transcripts.
No sample metadata fields
View SamplesThe precise makeup of chromatin remodeling complexes is important for determining cell type and cell function. The SWI/SNF chromatin remodeling complex is made up of multiple subunits that can be filled by mutually exclusive proteins. Inclusion or exclusion of these proteins has profound functional consequences, yet we currently understand little about the direct functional relationship between these biochemically distinct forms of remodeling complexes. Here we combine chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding information from the ENCODE project to determine the functional relationship between three biochemically distinct forms of SWI/SNF. We find widespread overlap in transcriptional regulation and the genomic binding of the three ARID (AT-Rich Interacting Domain) subunits of SWI/SNF. Despite the numerous similarities in their transcriptional regulation and the co-factors bound with each ARID we identify several novel interaction modalities. Previous work has found examples of competition or subunit switching at individual loci, and we find this functional relationship is widespread, and in these cases gene expression changes following loss of one ARID depend on the function of another ARID. We also identify a previously unknown cooperative interaction between ARID1B and ARID2 in the repression of a large number of genes. Together these data help untangle the complicated combinatorial relationships between a highly heterogenous chromatin remodeling family. Overall design: We performed depletion of ARID subunits (ARID1A , n=5; ARID1B, n=3, ARID2, n=5) of SWI/SNF using siRNA or a Non-Targeting control (N=6) and performed expression analysis using polyA+ selected RNA and a strand-specific dUTP incorporation library protocol.
Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes.
No sample metadata fields
View SamplesMacrophages, dendritic cells, conventional CD4+ T cells, CD8+ T cells, and regulatory T cells isolated from mouse colon cancer model MC38 tumors implanted subcutaneously to young (3 month) and aged (12 month) mice were sequenced using ImmGen's standard ultra-low input RNA-seq pipeline, in order to study age-dependent differences in intraltumoral immune cell functions and their impact on tumor control Overall design: Samples collected at the Center for Systems Biology at Mass General Hospital, shipped frozen to a central location, and sequenced using ImmGen's standard RNA-seq pipeline
Age-related tumor growth in mice is related to integrin α 4 in CD8+ T cells.
Age, Specimen part, Cell line, Subject
View SamplesHistone H3.3 is a highly conserved histone H3 replacement variant in metazoans, and has been implicated in many important biological processes including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components, or in H3.3 encoding genes, have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3 null mouse models through classical genetic approaches. We found H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres and pericentromeric regions of chromosomes leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development. Overall design: RNA-seq in embryos at E10.5 comparing 3 samples with the following genotype Trp53-/-; H3f3afl/-; H3f3bfl/-; Sox2-CreTg/0 to three samples with the following genotype Trp53-/-; H3f3afl/+; H3f3bfl/+; Sox2-CreTg/0
Histone H3.3 maintains genome integrity during mammalian development.
No sample metadata fields
View SamplesOf the thousands of long non-coding RNAs expressed in embryonic stem (ES) cells, few have known roles and fewer have been functionally implicated in the regulation of self-renewal and pluripotency or reprogramming somatic cells to the pluripotent state. In ES cells, Cyrano is a stably expressed long intergenic non-coding RNA with no previously assigned role. We demonstrate that Cyrano contributes to ES cell maintenance, as its depletion results in loss of hallmarks of self-renewal. Delineation of Cyrano''s network through transcriptomics revealed widespread effects on signaling pathways and gene expression networks that contribute to ES cell maintenance. Cyrano shares unique sequence complementarity with the differentiation-associated microRNA, mir-7, and mir-7 overexpression reduces expression of a key self-renewal factor to a similar extent as Cyrano knockdown. This suggests that Cyrano functions to restrain the action of mir-7. Altogether, we provide a view into the multifaceted function of Cyrano in ES cell maintenance. Overall design: RNA-seq on mouse R1 embryonic stem (ES) cells with two biological replicates transfected with an shRNA knockdown of Cyrano and two biological replicates transfected with a non-targeting control vector.
Long Noncoding RNA Moderates MicroRNA Activity to Maintain Self-Renewal in Embryonic Stem Cells.
Specimen part, Cell line, Subject
View SamplesAnalysis of gene expression in 17 low-grade fibromyxoid sarcoma (LGFMS) samples compared to that of histologically similar tumors. LGFMS is characterized by the specific translocations t(7;16)(q33;p11) or t(11;16)(p11;p11) and corresponding fusion genes FUS-CREB3L2 or FUS-CREB3L1.
FUS-CREB3L2/L1-positive sarcomas show a specific gene expression profile with upregulation of CD24 and FOXL1.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Restriction of intestinal stem cell expansion and the regenerative response by YAP.
Specimen part, Treatment
View SamplesRSpondin1 adenovirus was administered to mice and intestine was isolated for expression analysis 1 week later.
Restriction of intestinal stem cell expansion and the regenerative response by YAP.
Specimen part, Treatment
View SamplesHuman brown fat tumors (hibernomas) display concomitant loss of the tumor suppressor genes MEN1 and AIP. In the present study, we hypothesized that the brown fat phenotype is attributed to these mutations. Accordingly, we demonstrate that silencing of AIP in human brown preadipocytic and white fat cell lines results in the induction of the brown fat marker UCP1. In human adipocytic tumors, loss of MEN1 was found both in white (one out of 51 lipomas) and brown fat tumors. In contrast, concurrent loss of AIP was always accompanied by a brown fat morphology. We conclude that this white-to-brown phenotype switch in brown fat tumors is mediated by the loss of AIP.
Loss of the tumour suppressor gene AIP mediates the browning of human brown fat tumours.
Specimen part
View Samples