Alterations in the composition of the gut microbiome have an emerging role in brain function and behaviour. We have porposed that short chain fatty acids (SCFA) including propionate and butyrate which are present in the diet and are fermantation products of many gastrointestinal bacteria are contributing environmental factors in autism spectrum disorders (ASD). Here we used the microarray technology to compare global changes in gene expression profiles following exposure of PC12 cells to structurally related SCFA propionate and butyrate each in two different concentrations. Large number of affected genes, common for both SCFA were identified, including genetic networks and GO processes implicated in ASD.
Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.
Specimen part
View SamplesWe have previously reported that elevated fibroblast growth factor-2 (FGF-2) expression is associated with tumor recurrence and reduced survival after surgical resection of esophageal cancer, and that these risks are reduced in tumors co-expressing an endogenous antisense (FGF-AS) RNA. In the present study we examined the role of the endogenous FGF-AS transcript in the regulation of FGF-2 expression in the human lung adenocarcinoma cell line, Seg-1. FGF-2 and FGF-AS were temporally and spatially co-localized in the cytoplasm of individual cells, and knock-down of either FGF-2 or FGF-AS by target specific siRNAs resulted in dose-dependent up-regulation of the complementary transcript and its encoded protein product. Using a luciferase reporter system we show that these effects are mediated by interaction of the endogenous antisense RNA with the 3UTR of the FGF-2 mRNA. Deletion mapping identified a 392 nt sequence in the 5823 nucleotide FGF-2 untranslated tail which is targeted by FGF-AS. siRNA-mediated knockdown of either FGF-AS or FGF-2 significantly increased the stability of the complementary partner mRNA, demonstrating that these mRNAs are mutually regulatory. Knockdown of FGF-AS also resulted in reduced expression of argonaute-2 (AGO-2) and a number of other elements of the endogenous microRNA/RNAi pathways. Conversely, siRNA-mediated knockdown of AGO-2 significantly increased the stability of the FGF-2 mRNA transcript, and the steady-state levels of both FGF-2 mRNA and protein, suggesting a role for AGO-2 in the regulation of FGF-2 expression.
Regulation of fibroblast growth factor-2 by an endogenous antisense RNA and by argonaute-2.
Specimen part, Cell line
View SamplesFolate-mediated one-carbon metabolism is required for purine, thymidylate, and S-adenosylmethionine synthesis. Impairments in folate metabolism diminish cellular methylation potential and genome stability. Cytoplasmic serine hydroxymethyl transferase (cSHMT) regulates partitioning between thymidylate and SAM biosynthesis. These experiments were designed to determine if mutations in cSHMT led to alterations in gene expression.
Shmt1 heterozygosity impairs folate-dependent thymidylate synthesis capacity and modifies risk of Apc(min)-mediated intestinal cancer risk.
Age
View SamplesThe metabolic pathways that underlie the association between folate deficiency and increased risk for colorectal cancer (CRC) remain unclear. We have studied the effect of C1THF synthase (encoded by the Mthfd1 gene) and dietary folate and choline on intestinal tumor development in Apcmin/+ mice and azoxymethane (AOM)-induced colon cancer in mice. Mthfd1 deficiency did not alter tumor number or load in Apcmin/+ mice, but did result in a decreased incidence of colon tumors. Conversely, Mthfd1 deficiency increased tumor number 3.5-fold and tumor load 2-fold in AOM-treated mice. Here we tested colons isolated from wildtype and Mthfd1-deficient animals for alterations in gene expression.
Mthfd1 is a modifier of chemically induced intestinal carcinogenesis.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons.
Specimen part
View SamplesMyocardial infarction (MI) often results in left ventricular (LV) remodeling followed by heart failure (HF). It is of great clinical importance to understand the molecular mechanisms that trigger transition from compensated LV injury to HF and to identify relevant diagnostic biomarkers. In this study, we performed transcriptional profiling of LVs in rats with a wide range of experimentally induced infarct sizes and of peripheral blood mononuclear cells (PBMCs) in animals that developed HF.
Transcriptional profiling of left ventricle and peripheral blood mononuclear cells in a rat model of postinfarction heart failure.
Specimen part
View Samples3 subtypes of cortical projection neurons were purified by fluorescence-activated cell sorting (FACS) at 4 different stages of development from mouse cortex. A detailed description of the data set is described in Arlotta, P et al (2005) and Molyneaux, BJ et al (2009). The hybridization cocktails used here were originally applied to the Affymetrix mouse 430A arrays and submitted as GEO accession number GSE2039. The same hybridization cocktails were then applied to the Affymetrix mouse 430 2.0 arrays, and those data are contained in this series.
Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons.
Specimen part
View SamplesMammalian genomes encode several hundred Krüppel-associated box zinc finger proteins (KRAB-ZFPs) that bind DNA in a sequence-specific manner through tandem arrays of C2H2-type zinc fingers and repress transcription via KRAB-dependent recruitment of the silencing cofactor KAP1. The KRAB-ZFP family rapidly amplified and diversified in mammals by segmental gene duplications, mutations, and zinc finger rearrangements likely in response to continued transposable element invasions, but the biological functions and in vivo requirement of these proteins has gone largely unexplored. We determined the genomic binding sites of 61 murine KRAB-ZFPs and genetically deleted five large KRAB-ZFP gene clusters encoding more than 100 of the approximately 360 mouse KRAB-ZFPs. We demonstrate that most KRAB-ZFPs bind to specific retrotransposon families and that many of these retrotransposons are transcriptionally activated in KRAB-ZFP cluster KO ESCs, licensing retrotransposon-derived enhancers to activate nearby genes. Overall design: RNA-seq analysis of KRAB-ZFP cluster KO ES cells and tissues.
KRAB-zinc finger protein gene expansion in response to active retrotransposons in the murine lineage.
Age, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Embryonic stem cell potency fluctuates with endogenous retrovirus activity.
Specimen part, Cell line, Treatment
View SamplesWe compared gene expression from 2C::tomato+/- ES cells from Kdm1a wt and mutant ES cultures
Embryonic stem cell potency fluctuates with endogenous retrovirus activity.
Cell line
View Samples