Expression profiling following depletion of Mediator Cdk8 module subunits Cdk8, Cyclin C (CycC), Med12 and Med13 72 hours after dsRNA treatment of Drosophila melanogaster S2 cells. Results provide insight into the role of individual Cdk8 module subunits in regulation of transcription.
Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila.
Specimen part
View SamplesThe undifferentiated spermatogonial population of mouse testis is known to be functionally heterogeneous and contain both stem cells and committed progenitor cells. However, gene expression patterns marking these distinct cell fractions are poorly defined. We found that a subset of undifferentiated spermatogonia were marked by expression of a PDX1-GFP transgene but properties of these cells were unclear. Undifferentiated cells were therefore isolated from adult testes and separated according to expression of PDX1-GFP+ for gene expression analysis by RNA-seq. Our goal was to identify differentially expressed genes from PDX1-GFP+ vs PDX1-GFP- with that of known markers of stem and committed progenitor cells. Overall design: 4 independent sets of PDX1-GFP-positive and PDX1-GFP-negative undifferentiated spermatogonia were isolated by flow sorting from adult mouse testes.
Identification of dynamic undifferentiated cell states within the male germline.
Specimen part, Subject
View SamplesIschemia, fibrosis, and remodeling lead to heart failure after severe myocardial infarction (MI). Myoblast sheet transplantation is a promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in this detrimental disease. We hypothesized that in a rat model of MI-induced chronic heart failure this therapy could further be improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF) in the myoblast sheets. We studied the ability of wild type (L6-WT) and human HGF-expressing (L6-HGF) L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression using microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD) ligation and allowed heart failure to develop for four weeks. Thereafter, we administered L6-WT (n=15) or L6-HGF (n=16) myoblast sheet therapy. Control rats (n=13) underwent LAD ligation and rethoracotomy without therapy and five rats underwent sham-operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy administration. We analyzed cardiac angiogenesis and left ventricular architecture from histological sections 4 weeks after therapy. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further enhanced by hHGF-expression.
hHGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure.
No sample metadata fields
View SamplesThe Cdk7/cyclin H/mnage--trois 1 (MAT1) heterotrimer has proposed functions in transcription as the kinase component of basal transcription factor TFIIH and is activated in adult hearts by hypertrophic pathways. Using cardiac-specific Cre, we ablated MAT1 in myocardium. Despite reduced Cdk7 activity, MAT1-deficient hearts grew normally. However, fatal heart failure ensued at 6-8 weeks. By microarray profiling, quantitative RT-PCR, and Western blotting at 4 weeks, genes for energy metabolism were found to be suppressed selectively, including targets of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1). Cardiac metabolic defects were substantiated in isolated perfused hearts and isolated mitochondria. In culture, deleting MAT1 with Cre disrupted PGC-1 function: PGC-1 failed to activate PGC-1-responsive promoters and nuclear receptors, GAL4-PGC-1 was functionally defective, and PGC-1 likewise was deficient. PGC-1 was shown to interact with MAT1 and Cdk7, in co-precipitation assays. Thus, we demonstrate an unforeseen essential role for MAT1 in operation of the PGC-1 family of co-activators.
Ménage-à-trois 1 is critical for the transcriptional function of PPARgamma coactivator 1.
No sample metadata fields
View SamplesDietary gluten proteins (prolamins) from wheat, rye, and barley are the driving forces behind celiac disease, an organ-specific autoimmune disorder that targets both the small intestine and organs outside the gut. In the small intestine, gluten induces inflammation and a typical morphological change of villous atrophy and crypt hyperplasia. Gut lesions improve and heal when gluten is excluded from the diet and the disease relapses when patients consume gluten. Oral immune tolerance towards gluten may be kept for years or decades before breaking tolerance in genetically susceptible individuals. Celiac disease provides a unique opportunity to study autoimmunity and the transition in immune cells as gluten breaks oral tolerance. Seventy-three celiac disease patients on a long-term gluten-free diet ingested a known amount of gluten daily for six weeks. A peripheral blood sample and intestinal biopsies were taken before and six weeks after initiating the gluten challenge. Biopsy results were reported on a continuous numeric scale that measured the villus height to crypt depth ratio to quantify gluten-induced gut mucosal injury. Pooled B and T cells were isolated from whole blood, and RNA was analyzed by DNA microarray looking for changes in peripheral B- and T-cell gene expression that correlated with changes in villus height to crypt depth, as patients maintained or broke oral tolerance in the face of a gluten challenge.
A B-Cell Gene Signature Correlates With the Extent of Gluten-Induced Intestinal Injury in Celiac Disease.
Specimen part, Disease, Disease stage, Treatment, Subject
View SamplesEndothelial cell (EC) therapy may promote vascular growth or reendothelization in a variety of disease conditions. However, the production of a cell therapy preparation containing differentiated, dividing cells presenting typical EC phenotype, functional properties and chemokine profile is challenging. We focused on comparative analysis of seven small molecule-mediated differentiation protocols of ECs from human induced pluripotent stem cells. Differentiated cells showed a typical surface antigen pattern of ECs as characterized with flow cytometry analysis, functional properties, such as tube formation and ability to uptake acetylated LDL. Gene expression analysis by RNA sequencing revealed an efficient silencing of pluripotency genes and upregulation of genes related to cellular adhesion during differentiation. In addition, distinct patterns of transcription factor expression were identified during cellular reprogramming providing targets for more effective differentiation protocols in the future. Altogether, our results suggest that the most optimal EC differentiation protocol includes early inhibition of Rho-associated coiled-coil kinase and activation of cyclic adenosine monophosphate signaling, and inhibition of transforming growth factor beta signaling after mesodermal stage. These findings provide the first systematic characterization of the most potent signalling factors and small molecules used to generate ECs from human induced pluripotent stem cells. Consequently, this work improves the existing EC differentiation protocols and opens up new avenues for controlling cell fate for regenerative EC therapy. Overall design: Comparison of the effects of signalling factors and small molecules on endothelial cell differentiation from induced pluripotent stem cells using RNA-Seq. Following small molecules and growth factors were used in different combinations and time courses: 10 uM TGFß-inhibitor SB431542, 10 uM ROCK-inhibitor Y-27632, 20 ng/ml recombinant human BMP-4 and 0,25 mM 8-Br-cAMP. In all groups without TGFß-inhibitor at day 1 in the differentiation, it was added at day 4. In those groups with BMP-4 at day 1, it was removed at day 4. Differentiating ECs were passaged every 4-6 days using Accutase.
Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules.
Specimen part, Cell line, Subject
View SamplesGlobal transcriptome analysis showed that human lymphatic endothelial cells (LECs) grown on a soft matrix exhibit increased GATA2 expression, concomitant with a GATA2-dependent upregulation of genes involved in cell migration and lymphangiogenesis, including the key lymphangiogenic growth factor receptor VEGFR3.
Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program.
Specimen part
View SamplesThe cellular and molecular aspects of post-infarct left-ventricle remodeling in presence of type-2 diabetes is poorly understood. In this study we have addressed the cellular and molecular aspects underlying post-infarct left-ventricle remodeling in type 2 diabetic (T2DM) mice using genome-wide mRNA-sequencing. Myocardial infarction was induced by ligating left-anterior descending artery (LAD) in 12-14 month old T2DM and control mice. Cardiac MRI was performed at baseline, day 7 and 14 post-LAD ligation. Blood and tissue samples were collected for biochemical and immunohistochemical, molecular biology analysis after sacrification at day 7 and 14. Genome-wide mRNA sequencing analysis was performed from left-ventricular tissues collected at day 7 post-LAD ligation. Mitochondrial dynamics, Leukocyte recruitment and Collagen I deposition were analyzed using electron microscopy, fluorescent assisted cell sorting (FACS) and fourier-transform infra-red (FTIR) spectroscopy from left ventricular tissues collected at day 7 and 14 post-LAD ligation. Cardiac ejection fraction (EF) and stroke volume (SV) were significantly reduced along with increased mortality in T2DM compared to controls. Ingenuity pathway analyses of differentially expressed genes were enriched for mitochondrial dysfunction, TCA cycle and fatty acid oxidation. Additionally, upstream transcription factor analysis showed inhibition of PGC1a, PGC1b, ESRRA, ESRRB and TFAM in infarcted myocardium of T2DM mice. Electron microscopy analysis showed an altered mitochondrial dynamics and cardiomyocyte death in ischemic myocardium of T2DM mice. Leukocytes exhibited an altered phenotype in ischemic myocardium of T2DM mice. Neovascularization was impaired and collagen deposition was increased in ischemic myocardium of T2DM mice. We conclude that an altered mitochondrial dynamics, cell death modalities, leukocyte phenotype, neovascularization responses and fibrosis may contribute to an increased mortality after myocardial infarction in T2DM. Modulation of mitochondrial dynamics and cardiomyocyte cell death modalities may offer a novel therapeutic target. Overall design: Myocardial infarction was induced by ligating left anterior descending artery (LAD). Total RNA was isolated from remote, Infarct and border zones at day 7 after myocardial infarction. Poly (A)+RNA fraction was subjected to RNA sequencing using Illumina HiSeq.
Aggravated Postinfarct Heart Failure in Type 2 Diabetes Is Associated with Impaired Mitophagy and Exaggerated Inflammasome Activation.
No sample metadata fields
View SamplesPaired samples from human femoral artery lesions were obtained during intravascular surgery exploiting Silverhawk device
Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster.
Sex, Age, Specimen part
View SamplesSerrated adenocarcinomas are morphologically different from conventional adenocarcinomas. The serrated pathway has recently been proposed to represent a novel mechanism of colorectal cancer (CRC) formation. However, whether they are biologically different and truly form a distinct subclass of CRC, is not known. This study shows that the gene expression profile of serrated and conventional CRCs differs from each others and that serrated CRCs are not only morphologically novel, but also biologically distinct subclass of CRC.
Serrated carcinomas form a subclass of colorectal cancer with distinct molecular basis.
No sample metadata fields
View Samples