Arabipdosis thaliana (ecotype Col-0) was infected with the root pathogen Plasmodiophora brassicae. Gene expression of the host plant has been analyzed at two time points after inoculation (10 and 23 days after inoculation) compared to the correspondend control plants.
Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development.
Age, Specimen part, Cell line, Time
View SamplesTo delineate specific patterns of signaling networks activated by H5N1 we used a comparative systems biology approach analyzing gene expression in endothelial cells infected with three different human and avian influenza strains of high and low pathogenicity.
Essential impact of NF-kappaB signaling on the H5N1 influenza A virus-induced transcriptome.
No sample metadata fields
View SamplesMacrophages were infected with low (PR8) and high pathogenic influenza viruses (FPV and H5N1). To our surprise a genome-wide comparative systems biology approach revealed that in contrast PR8 infections with HPAIV H5N1 and FPV result in a reduced immune response of human macrophages contradicting a primary role of this cell type for the cytokine storm.
Highly pathogenic avian influenza viruses inhibit effective immune responses of human blood-derived macrophages.
Specimen part
View SamplesHighly pathogenic avian influenza viruses (HPAIV) induce severe inflammation in poultry and men. There is still an ongoing threat that these viruses may acquire the capability to freely spread as novel pandemic virus strains that may cause major morbidity and mortality. One characteristic of HPAIV infections is the induction of a cytokine burst that strongly contributes to viral pathogenicity. It has been suggested, that this cytokine overexpression is an intrinsic feature of infected cells and involves hyperinduction of p38 mitogen activated protein kinase (MAPK). Here we investigate the role of MAPK p38 signaling in the antiviral response against HPAIV in mice as well as in endothelial cells, the latter a primary source for cytokines during systemic infections.
Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection.
Specimen part
View SamplesPiriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of many plant species including Arabidopsis thaliana. The symbiotic interaction promotes plant per-formance, growth and resistance/tolerance against abiotic and biotic stress. We demonstrate that exudated compounds from the fungus activate stress and defense responses in the Arabidopsis roots and shoots before the two partners are in physical contact. They induce stomata closure, stimulate reactive oxygen species (ROS) production, stress-related phytohormone accumulation and activate defense and stress genes in the roots and/or shoots. Once a physical contact is established, the stomata re-open, ROS and phytohormone levels decline, and the gene expression pattern indicates a shift from defense to mutualistic interaction.
The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts.
Age, Specimen part
View SamplesBackground
Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype.
Specimen part
View SamplesUsing oligonucleotide microarray analysis, we identified 56 genes that were transcriptionally up-regulated and 69 that were suppressed upon exposure of endothelial cells to C. albicans. Among the regulated genes those attributed to the categories chemotaxis, signaling, and transcription and translation were remarkably overrepresented.
Candida albicans triggers activation of distinct signaling pathways to establish a proinflammatory gene expression program in primary human endothelial cells.
No sample metadata fields
View SamplesThe tumor suppressor BRCA1 regulates DNA damage responses and multiple other processes. Among these, BRCA1 heterodimerizes with BARD1 to ubiquitylate targets via its N-terminal RING domain. Here we show that BRCA1 promotes oxidative metabolism via degradation of Oct1, a transcription factor with pro-glycolytic/tumorigenic effects. BRCA1 E3 ubiquitin ligase mutation skews cells towards a glycolytic metabolic profile while elevating Oct1 protein. CRISPR-mediated Oct1 deletion reverts the glycolytic phenotype. RNAseq confirms the deregulation of metabolic genes. BRCA1 mediates direct Oct1 ubiquitylation and degradation, and mutation of two ubiquitylated Oct1 lysines insulates the protein against BRCA1-mediated destabilization. Oct1 deletion in MCF-7 breast cancer cells does not perturb growth in standard culture, but inhibits growth in soft agar and xenografts. Oct1 protein levels correlate positively with tumor aggressiveness, and inversely with BRCA1, in primary breast cancer samples. These results identify BRCA1 as an Oct1 ubiquitin ligase that catalyzes Oct1 degradation to promote oxidative metabolism. Overall design: mRNA profiles of BRCA1-I26A mutant MEFs treated with control CRISPR lentiviral vector, or an Oct1-specific CRISPR construct
BRCA1 through Its E3 Ligase Activity Regulates the Transcription Factor Oct1 and Carbohydrate Metabolism.
Specimen part, Cell line, Subject
View SamplesTo determine the impact of ?Np63a knockdown on steady-state mRNA levels, we performed poly(A)-enriched RNA-seq analysis of lung squamous cell carcinoma line H226 (inducible shControl and shp63) in the presence of 1µg/mL doxycycline to induce shRNA expression. Overall design: Poly(A)+ RNA for two independent biological replicates was purified from H226 cells (inducible shControl and shp63) incubated treated for six days with 1 µg/mL doxycycline. a TruSeq Stranded mRNA Library Prep Kit (Illumina). Libraries were sequenced on an Illumina HiSeq 2000 system at the University of Colorado Cancer Center Genomics and Microarray Core facility. Reads were aligned (TopHat2) to the Human reference genome (GRCh37/hg19) and gene-level counts (HTseq-count) were used for differential expression analysis (DESeq2).
ΔNp63α Suppresses TGFB2 Expression and RHOA Activity to Drive Cell Proliferation in Squamous Cell Carcinomas.
Specimen part, Cell line, Treatment, Subject
View SamplesTumor epithelium and surrounding stromal cells were isolated using laser capture microdissection of human breast cancer to examine differences in gene expression based on tissue types from inflammatory and non-inflammatory breast cancer
A stromal gene signature associated with inflammatory breast cancer.
Specimen part, Disease, Race, Subject
View Samples