Phosphorylation and subsequent nuclear translocation of SMAD proteins determine the cellular response to activin. Here we identify a novel means by which activin signalling is regulated to enable developmental stage-specific SMAD gene transcription. In response to activin A, immature proliferating mouse Sertoli cells exhibit nuclear accumulation of SMAD3, but not SMAD2, although both proteins are phosphorylated. In post-mitotic differentiating cells, both SMAD2 and SMAD3 accumulate in the nucleus. Furthermore, immature Sertoli cells are sensitive to activin dosage; at higher concentrations maximal SMAD3 nuclear accumulation is observed, accompanied by a small, but significant, increase in nuclear SMAD2. Microarray analysis confirmed that differential SMAD utilization correlated with altered transcriptional outcomes and identified new activin target genes, Gja1 and Serpina5, which are known to be required for Sertoli cell development and male fertility. In immature Sertoli cells, genetic or transient knockdown of SMAD3 enhanced SMAD2 nuclear accumulation in response to activin, with increased Serpina5 mRNA levels associated with nuclear localized SMAD2. In transgenic mice with altered activin bioactivity that display male fertility phenotypes, testicular Gja1 and Serpina5 mRNA levels reflected altered in vivo activin levels. We conclude that regulated nuclear accumulation of phosphorylated SMAD2 is a novel determinant of developmentally regulated activin signalling.
Developmentally regulated SMAD2 and SMAD3 utilization directs activin signaling outcomes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epipolymorphisms associated with the clinical outcome of autoimmune arthritis affect CD4+ T cell activation pathways.
Sex
View SamplesMultifactorial diseases, including autoimmune juvenile idiopathic arthritis (JIA), result from a complex interplay between genetics and environment. Epigenetic mechanisms are believed to integrate such gene-environment interactions, fine-tuning gene expression and possibly contributing to immune system dysregulation. Although anti-TNF therapy has strongly increased JIA remission rates, it is not curative and up to 80% of patients flare upon treatment withdrawal. Thus, a crucial unmet medical and scientific need is to understand the immunological mechanisms associated with remission or flare to inform clinical decisions. Here, we explored the CD4+ T cell DNA methylome of 68 poly-articular and extended oligo-articular JIA patients, before and after anti-TNF therapy withdrawal, to identify features associated with maintenance of inactive disease (ID). Individual CpG sites were clustered in coherent modules without a priori knowledge of their function through network analysis. The methylation level of several CpG modules, specifically those enriched in CpG sites belonging to genes that mediate T cell activation, uniquely correlated with clinical activity. Differences in DNA methylation were already detectable at the time of therapy discontinuation, suggesting epigenetic predisposition. RNA profiling also detected differences in T cell activation markers, including HLA-DR, but, overall, its sensitivity was lower than epigenetic profiling. Changes to the T cell activation signature at the protein level were detectable by flow cytometry, confirming the biological relevance of the observed alterations in methylation. Our work proposes, for the first time, epigenetic discrimination between clinical activity states, and reveals T cell-related biological functions tied to, and possibly predicting and/or causing, clinical outcome.
Epipolymorphisms associated with the clinical outcome of autoimmune arthritis affect CD4+ T cell activation pathways.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.
Cell line
View SamplesMicroRNAs (miRNAs) repress the expression levels of genes by binding to mRNA transcripts, acting as master regulators of cellular processes. Differential expression of miRNAs has been linked to viral-associated diseases involving members of the hepacivirus, herpesvirus, and retrovirus families. In contrast, limited biological and molecular information has been reported on the potential role of cellular miRNAs in the lifecycle of influenza A viruses (infA). In this study, we hypothesize that elucidating the miRNA expression signatures induced by low-pathogenic swine-origin influenza A virus (S-OIV) pandemic H1N1 (2009) and highly pathogenic avian-origin (A-OIV) H7N7 (2003) infections could reveal temporal and strain-specific miRNA fingerprints during the viral lifecycle, shedding important insights into the potential role of cellular miRNAs in host-infA interactions. Using a microfluidic microarray platform, we profiled cellular miRNA expression in human A549 cells infected with S- and A-OIVs at multiple time-points during the viral lifecycle, including global gene expression profiling during S-OIV infection. Using target prediction and pathway enrichment analyses, we identified the key cellular pathways associated with the differentially expressed miRNAs and predicted mRNA targets during infA infection, including immune system, cell proliferation, apoptosis, cell cycle, and DNA replication and repair. By identifying the specific and dynamic molecular phenotypic changes (microRNAome) triggered by S- and A-OIV infection in human cells, we provide experimental evidence demonstrating a series of temporal- and strain-specific host molecular responses involving different combinatorial contributions of multiple cellular miRNAs. Our results also identify novel potential exosomal miRNA biomarkers associated with pandemic S-OIV and deadly A-OIV-host infection.
Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.
Cell line
View SamplesThe analysis of gene expression during wheat development:
Comparative transcriptomics in the Triticeae.
No sample metadata fields
View SamplesFoxl2 is a forkhead transcription factor expressed only in the female, but not in the male gonad. We have created mice homozygous mutant for the Foxl2 gene (KO) as well as mice carrying a conditional mutant Foxl2 allele (floxed).
Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation.
Specimen part
View SamplesThe mechanisms that determine the efficacy or inefficacy of methotrexate in juvenile idiopathic arthritis (JIA) are ill-defined. The objective of this study was to identify a gene expression transcriptional signature associated with poor response to MTX in patients with JIA. RNA sequencing was used to measure gene expression in peripheral blood mononuclear cells (PBMC) collected from 47 patients with JIA prior to MTX treatment and 14 age-matched controls. Biological differences between all JIA patients and controls were explored by constructing a signature of differentially expressed genes. Unsupervised clustering and pathway analysis was performed. Transcriptional profiles were compared to a reference gene expression database representing sorted cell populations, including B and T lymphocytes, and monocytes. A signature of 99 differentially expressed genes (Bonferroni-corrected p<0.05) capturing the biological differences between all JIA patients and controls was identified. Unsupervised clustering of samples based on this list of 99 genes produced subgroups enriched for MTX response status. Comparing this gene signature to reference signatures from sorted cell populations revealed high concordance between the expression profiles of monocytes and of MTX non-responders. CXCL8 (IL-8) was the most significantly differentially expressed gene transcript comparing all JIA patients to controls (Bonferroni-corrected p=4.12E-10). Variability in clinical response to methotrexate in JIA patients is associated with differences in gene transcripts modulated in monocytes. These gene expression profiles may provide a basis for biomarkers predictive of treatment response. Overall design: Peripheral blood mononuclear cells (PBMC) collected from 47 patients with JIA prior to MTX treatment and 14 age-matched controls
Transcriptional profiles of JIA patient blood with subsequent poor response to methotrexate.
Subject
View SamplesSilymarin (SM) is a popular botanical medicine with purported liver protective effects. SM displays multiple effects in animal models and in cell culture including prevention of liver disease, reduction of inflammation, oxidative stress, and proliferation. Despite a plethora of data indicating that SM impinges on multiple cellular signaling pathways important in inflammation and disease, no unifying mechanisms have been forwarded. To define how SM elicits so many biological effects, the current study presents the first comprehensive transcriptional profiling study of human hepatoma cells treated with SM. The intention of the study was to focus on the early transcriptional events that are associated with SM-induced inhibition of proliferation and inflammation. Collectively, the data demonstrate that SM causes a rapid transcriptional reprogramming of cells that initially manifests as energy stress and slowing of cellular metabolism, leading to inhibition of cell growth and inflammation.
Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling.
Specimen part, Cell line, Treatment, Time
View SamplesBET-regulated transcriptome and BRD4, BRD2, BRD3 and Pol II ChIP-seq datasets in human ESCs before and after BET inhibition. Transcription factors and chromatin remodeling complexes are key determinants of embryonic stem cell (ESC) identity. In this study, we investigate the role of BRD4, a member of the bromodomain and extra-terminal domain (BET) family of epigenetic reader proteins, in control of ESC identity. We performed RNA-seq analyiss in the presense of small molecule inhibitors of BET proteins to show that BRD4 positively regulates the ESC transcriptome. We also integrated RNA-seq analysis with ChIP-sequencing datasets s for BRD4 (and for other BRD2 and BRD3) to demonstrate that BRD4 binds SEs and regulates the expression of SE-associated pluripotency genes. We have also conducted ChIP-seq analysis for Pol II binding to demonstrate that SE-associated genes depend on BRD4-dependent Pol II binding at TSS and gene body for their productive transcriptional elongation. Overall design: Total RNA was extracted from samples using the RNeasy Qiagen kit according to the manufacturer’s instructions. Deep sequencing of RNA (1ug) from hESCs FGF- or MS436-treated at day 1 and day 5 was performed as described in (Higgin et al., 2010c). Samples were subjected to PolyA selection using magnetic oligo-dT beads. The resulting RNA samples were then used as input for library construction as described by the manufacturer (Illumina, CA, USA). RNA libraries were then sequenced on the GAIIx system using 50bp single reads. Chromatin for ChIP-sequencing was obtained from FGF-maintained hESCs, vehicle or MS417-treated (at 250nM concentration for 6h) (10 to 20x106 cells/IP). ChIP-Seq libraries were generated using standard Illumina kit and protocol as described in (Ntziachristos et al., 2012). We performed cluster amplification and single read 50 sequencing-method using the Illumina HiSeq 2000, following manufacturer’s protocols.
Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes.
No sample metadata fields
View Samples