Foregut organogenesis is regulated by inductive interactions between the endoderm and the adjacent mesoderm. We identified genes induced in the foregut progenitors by the adjacent mesoderm.
Sizzled-tolloid interactions maintain foregut progenitors by regulating fibronectin-dependent BMP signaling.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes.
No sample metadata fields
View SamplesPrimary cell cultures were isolated from KrasG12D-driven, PiggyBac transposon-transposase pancreatic cancer cell cultures and subjected to microarray-based expression profiling for the investigation of expression profiles.
Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes.
No sample metadata fields
View SamplesHuman Umbilical Vein Endothelial Cells were treated with three newly synthesized compounds and DMSO as vehicle. Total RNA was isolated 6 and 24h after treatment and gene expression analysis was performed. Three independent experiments were performed, corresponding to rep1, rep2 and rep3. Experiment 1 (rep1) contained all substances at both time points tested. Experiment 2 (rep2) contained two of the compounds and control DMSO at both time points. Experiment 3 (rep3) contained the third compound and control DMSO at both time points.
Novel pyrazolopyridine derivatives as potential angiogenesis inhibitors: Synthesis, biological evaluation and transcriptome-based mechanistic analysis.
Specimen part, Time
View SamplesPrions consist of aggregates of abnormal conformers of cellular prion protein (PrPC). They propagate by recruiting host-encoded PrPC although the critical interacting proteins and the reasons for the differences in susceptibility of distinct cell lines and populations are unknown. We derived a lineage of cell lines with markedly differing susceptibilities, unexplained by PrPC expression differences, to identify such factors. We examined the transcriptomes of prion-resistant revertants, isolated from highly susceptible cells, and identified a gene expression signature associated with susceptibility. Several of these genes encode proteins with a role in extracellular matrix (ECM) remodelling, a compartment in which disease-related PrP deposits. Loss-of-function of nine of these genes significantly increased susceptibility. Remarkably, inhibition of fibronectin 1 binding to integrin 8 by RGD peptide inhibited metalloproteinases (MMP)-2/9 whilst increasing prion propagation rates. This indicates that prion replication may be controlled by MMPs at the ECM in an integrin-dependent manner.
Identification of a gene regulatory network associated with prion replication.
Treatment
View SamplesControversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance
Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion.
Specimen part
View SamplesWe advance a three gene model of arsenate tolerance in rice based on testing root growth of 108 recombinant inbred lines (RILs) of the Bala x Azucena population. Marker genotype at 3 loci determined arsenate tolerance in 99% of RILs tested. Interestingly, plants must inherit 2, but any two alleles from the tolerant parent (Bala) to have the tolerant phenotype. Challenging the Affymetrix GeneChip Rice Genome array with Azucena and Bala RNA isolated from control and arsenate treated plants revealed 592 genes 2 fold-upregulated by arsenate and 696 downregulated. The array data was also used to identify which genes are expressed within the three target loci.
Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis.
No sample metadata fields
View SamplesLong non-coding RNAs (lncRNAs) are expressed in a highly tissue-specific manner where they function in various aspects of cell biology, often as key regulators of gene expression. In this study we established a role for lncRNAs in chondrocyte differentiation. Using RNA sequencing we identified a human articular chondrocyte repertoire of lncRNAs from normal hip cartilage donated by neck of femur fracture patients. Of particular interest are lncRNAs upstream of the master chondrocyte transcription factor SOX9 locus. SOX9 is an HMG-box transcription factor which is essential for chondrocyte development by directing the expression of chondrocyte specific genes. Two of these lncRNAs are upregulated during chondrogenic differentiation of MSCs. Depletion of one of these lncRNA, LOC102723505, which we termed ROCR (regulator of chondrogenesis RNA), by RNAi disrupted MSC chondrogenesis, concomitant with reduced cartilage-specific gene expression and incomplete matrix component production, indicating an important role in chondrocyte biology. Specifically, SOX9 induction was significantly ablated in the absence of ROCR, and overexpression of SOX9 rescued the differentiation of MSCs into chondrocytes. Our work sheds further light on chondrocyte specific SOX9 expression and highlights a novel method of chondrocyte gene regulation involving a lncRNA. Overall design: Human neck of femure fracture hip cartilage chondrocyte mRNA profile generated by RNA-seq
Expression analysis of the osteoarthritis genetic susceptibility mapping to the matrix Gla protein gene MGP.
Sex, Age, Specimen part, Subject
View SamplesThe Wnt signaling pathway is deregulated in over 90% of human colorectal cancers. Catenin, the central signal transducer of the Wnt pathway, can directly modulate gene expression by interacting with transcription factors of the TCF/LEF-family. In the present study we investigate the role of Wnt signaling in the homeostasis of intestinal epithelium using tissue-specific, inducible beta-catenin gene ablation in adult mice. Block of Wnt/beta-catenin signaling resulted in rapid loss of transient-amplifying cells and crypt structures. Importantly, intestinal stem cells were induced to terminally differentiate upon deletion of beta-catenin resulting in a complete block of intestinal homeostasis and fatal loss of intestinal function. Transcriptional profiling of mutant crypt mRNA isolated by laser capture micro dissection confirmed those observations and allowed to identify genes potentially responsible for the functional preservation of intestinal stem cells.
Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells.
No sample metadata fields
View SamplesOverall study: Identification of PDGF-dependent patterns of gene expression in U87 glioblastoma cells.
Autocrine platelet-derived growth factor-dependent gene expression in glioblastoma cells is mediated largely by activation of the transcription factor sterol regulatory element binding protein and is associated with altered genotype and patient survival in human brain tumors.
No sample metadata fields
View Samples