Peripheral whole blood transcriptome profiles of pregnant women with normal pregnancy and preeclampsia from 10-18 weeks of gestational age enrolled in the Vitamin D Antenatal Asthma Reduction Trial (VDAART).
Early pregnancy vitamin D status and risk of preeclampsia.
Sex, Race
View SamplesMicroarray data from this study represent the first global transcriptional survey of gene expression during early compared to late diaphragm formation.
Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes.
No sample metadata fields
View SamplesOral tolerance prevents pathological inflammatory responses towards innocuous foreign antigens via peripheral regulatory T cells (pTreg cells). However, whether a particular subset of antigen-presenting cells (APCs) is required during dietary antigen exposure to instruct naïve CD4+ T cells to differentiate into pTreg cells has not been defined. Using myeloid lineage-specific APC depletion in mice, we found that monocyte-derived APCs are dispensable, while classical dendritic cells (cDCs) are critical for pTreg cell induction and oral tolerance. CD11b¬– cDCs from the gut-draining lymph nodes efficiently induced pTreg cells, and conversely, loss of IRF8-dependent CD11b– cDCs impaired their polarization, although oral tolerance remained intact. These data reveal the hierarchy of cDC subsets in pTreg cell induction and their redundancy during oral tolerance development. Overall design: Four dendritic cell subpopulations from mouse mesenteric lymphnodes were sorted and compared in their gene expression profile
Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance.
Specimen part, Cell line, Subject
View SamplesOral tolerance prevents pathological inflammatory responses towards innocuous foreign antigens via peripheral regulatory T cells (pTreg cells). However, whether a particular subset of antigen-presenting cells (APCs) is required during dietary antigen exposure to instruct naïve CD4+ T cells to differentiate into pTreg cells has not been defined. Using myeloid lineage-specific APC depletion in mice, we found that monocyte-derived APCs are dispensable, while classical dendritic cells (cDCs) are critical for pTreg cell induction and oral tolerance. CD11b¬– cDCs from the gut-draining lymph nodes efficiently induced pTreg cells, and conversely, loss of IRF8-dependent CD11b– cDCs impaired their polarization, although oral tolerance remained intact. These data reveal the hierarchy of cDC subsets in pTreg cell induction and their redundancy during oral tolerance development. Overall design: Sorted naïve CD45.1 OT-II CD4 T cells were co-cultured with four dendritic cell subpopulations sorted from mouse mesenteric lymphnodes. 24h later OT-II cells were sorted again and compared in their gene expression profile.
Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance.
Specimen part, Cell line, Subject
View SamplesWe assessed genome-wide expression of available pretreatment specimens from CLL patients enrolled in REACH, a study of fludarabine and cyclophosphamide FC or R-FC (addition of rituximab to FC) in relapsed CLL, to understand the disease heterogeneity and explore genes that may be prognostic or predictive of benefit from R-FC treatment. REACH (NCT00090051) was registered at www.clinicaltrials.gov.
PTK2 expression and immunochemotherapy outcome in chronic lymphocytic leukemia.
Specimen part, Disease stage, Subject
View SamplesAnalysis of L-Myc-dependent genes in pDCs and classical DC subsets with and without stimulation.
L-Myc expression by dendritic cells is required for optimal T-cell priming.
Specimen part, Treatment
View Samples3 samples of R1, R2 and R3 bone marrow monocytes were compared from 3 biological replicates in 3 separate experiments.
The Heterogeneity of Ly6C<sup>hi</sup> Monocytes Controls Their Differentiation into iNOS<sup>+</sup> Macrophages or Monocyte-Derived Dendritic Cells.
Specimen part
View SamplesCohesin, which consists of SMC1, SMC3, Rad21 and either SA1 or SA2, topologically embraces the chromatin fibers to hold sister chromatids together and to stabilize chromatin loops. Increasing evidence indicates that these loops are the organizing principle of higher-order chromatin architecture, which in turn is critical for gene expression. To determine how cohesin contributes to the establishment of tissue-specific transcriptional programs, we compared genome-wide cohesin distribution, gene expression and chromatin architecture in cerebral cortex and pancreas from adult mice. More than one third of cohesin binding sites differ between the two tissues and these are enriched at the regulatory regions of tissue-specific genes. Cohesin colocalizes extensively with the CCCTC-binding factor (CTCF). Cohesin/CTCF sites at active enhancers and promoters contain, at least, cohesin-SA1 whereas either cohesin-SA1 or cohesin-SA2 are present at active promoters independently of CTCF. Analyses of chromatin contacts at the Protocadherin gene cluster and the Regenerating islet-derived (Reg) gene cluster, mostly expressed in brain and pancreas respectively, revealed remarkable differences in the architecture of these loci in the two tissues that correlate with the presence of cohesin. Moreover, we found decreased binding of cohesin and reduced transcription of the Reg genes in the pancreas of SA1 heterozygous mice. Given that Reg proteins are involved in the control of inflammation in pancreas, such reduction may contribute to the increased incidence of pancreatic cancer reported in these animals. Overall design: Examination of the relationship between gene expression, genome wide cohesin distribution and chromatin structure
The contribution of cohesin-SA1 to gene expression and chromatin architecture in two murine tissues.
No sample metadata fields
View SamplesRecent genetic studies in mice have established a key role for the nuclear receptor coregulator Trim24 in liver tumor suppression and provided evidence that Trim24 suppresses hepatocarcinogenesis by inhibiting retinoic acid receptor alpha (Rara)-dependent transcription and cell proliferation. However, it is unknown which downstream targets of Rara regulated by Trim24 are critical for tumorigenesis. We report here that loss of Trim24 results in the overexpression of interferon (IFN)/STAT pathway genes in the liver, a process that occurs early in tumorigenesis and is more pronounced in tumors, despite the enhanced expression, late in the disease, of negative regulators such as Usp18, Socs1 and Socs2.
Tripartite motif 24 (Trim24/Tif1α) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor α (Rarα) inhibition.
Specimen part
View SamplesHere, in this study we systematically examined the patterns of DNA methylation and hydroxy-methylation with its functional implications in gene regulation for the cultured TK6 lymphoblastoid cells upon exposure to micro-gravity conditions. The results reported here indicate that simulated microgravity alters methylation patterns in a limited way and subsequently the expression of genes involved in stress response like ATF3, FBXO17, MAP3K13 and VCL in TK6 cells. Overall design: Examination of RNA-seq with 2 replicates each for 1 cell type
A Study of Alterations in DNA Epigenetic Modifications (5mC and 5hmC) and Gene Expression Influenced by Simulated Microgravity in Human Lymphoblastoid Cells.
No sample metadata fields
View Samples