Owing to the risk of insertional mutagenesis, viral transduction has been increasingly replaced by nonviral methods to generate induced pluripotent stem (iPS) cells. We report the use of minicircle DNA, a vector type that is free of bacterial DNA and capable of high expression in cells. Here we use a single minicircle vector to generate transgene-free iPSCs from adult human adipose stem cells. (Note: Our Nature Methods publication included analysis of array data from GSM378832 (Foreskin), GSM378833-GSM378838 (JT-iPSC), and GSM378817-GSM378820 (H1, H7, H9, H13, H14) in conjunction with this series).
A nonviral minicircle vector for deriving human iPS cells.
Specimen part
View SamplesDermal fibroblasts represent a heterogeneous population of cells with diverse features that remain largely undefined due to a lack of functional subclasses. Here we reveal the presence of multiple lineages of dermal fibroblasts within the dorsal back. Genetic lineage tracing and transplantation assays demonstrate that the bulk of connective tissue deposition during embryonic development, cutaneous wound healing, radiation fibrosis, and cancer stroma formation is carried out by a single, somitic-derived fibroblast lineage. Reciprocal transplantation of distinct fibroblast lineages between the dorsal back and oral cavity induced ectopic dermal architectures that mimic their placeof-origin. These studies demonstrate that intra and inter-site diversity of dermal architectures are set embryonically and maintained postnatally by distinct lineages of fibroblasts. Lineage-specific cell ablation using transgenic-mediated expression of the simian diphtheria toxin receptor in conjunction with localized administration of diphtheria toxin led to diminished connective tissue deposition in wounds and significantly reduced melanoma growth in the dorsal skin of mice. Using flow cytometry and in silico approaches, we identify CD26/DPP4 as a surface marker that allows for the isolation of this fibrogenic, scar-forming lineage. Small molecule-based inhibition of CD26/DPP4 enzymatic activity during wound healing results in diminished cutaneous scarring. The identification and prospective isolation of these lineages holds promise for translational medicine aimed at in vivo modulation of their fibrogenic behavior.
Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential.
Specimen part, Treatment
View SamplesHypertrophic scar (HTS) formation is characterized by exuberant fibroproliferation for reasons that remain poorly understood1. One important but often overlooked component of wound repair is mechanical force, which regulates reciprocal cell-matrix interactions through focal adhesion components including focal adhesion kinase (FAK)1,2. Here we report that FAK is activated following cutaneous injury and that this activation is potentiated by mechanical loading. Transgenic mice lacking fibroblast-specific FAK exhibit significantly less fibrosis in a preclinical model of HTS formation. Inflammatory pathways involving monocyte chemoattractant protein-1 (MCP-1), a chemokine highly implicated in human skin fibrosis3, are triggered following FAK activation, mechanistically linking physical force to fibrosis. Further, small molecule inhibition of FAK effectively abrogates fibroproliferative mechanisms in human cells and significantly reduces scar formation in vivo. Collectively, these findings establish a molecular basis for HTS formation based on the mechanical activation of fibroblast-specific FAK and demonstrate the therapeutic potential of targeted mechanomodulatory strategies.
Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling.
Sex, Specimen part
View SamplesDilated cardiomyopathy (DCM) is the leading cause of heart failure and transplantation worldwide. We used iPSCs to model this disease and compared gene expression change before and after gene therapy of cardiomyocytes derived from DCM-specific iPSCs.
Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy.
Specimen part
View SamplesProspectively isolated and characerized skeletal progenitor lineages
Identification and specification of the mouse skeletal stem cell.
Specimen part
View SamplesProspectively isolated and characerized skeletal progenitor lineages
Identification and specification of the mouse skeletal stem cell.
Specimen part
View SamplesOsteoarthritis (OA) is a degenerative disease resulting in irreversible, progressive destruction of articular cartilage1. The etiology of OA is complex and involves a variety of factors, including genetic predisposition, acute injury and chronic inflammation2-4. Here we investigate the ability of resident skeletal stem-cell (SSC) populations to regenerate cartilage in relation to age, a possible contributor to the development of osteoarthritis. We demonstrate that aging is associated with progressive loss of SSCs and diminished chondrogenesis in the joints of both mice and humans. However, a local expansion of SSCs could still be triggered in the chondral surface of adult limb joints in mice by stimulating a regenerative response using microfracture (MF) surgery. Although MF-activated SSCs tended to form fibrous tissues, localized co-delivery of BMP2 and soluble VEGFR1 (sVEGFR1), a VEGF receptor antagonist, in a hydrogel skewed differentiation of MF-activated SSCs toward articular cartilage. These data indicate that following MF, a resident stem-cell population can be induced to generate cartilage for treatment of localized chondral disease in OA.
Articular cartilage regeneration by activated skeletal stem cells.
Specimen part, Treatment
View SamplesBaseline gene expression of patient dermal fibroblasts derived iPSCs generated by lentiviral Yamanaka 4 factors. We used microarrays to detail the global gene expression of Hypertrophic cardiomyopathy (HCM) patient specific iPSCs.
Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells.
Specimen part, Disease, Disease stage
View SamplesThis experiment was specifically designed to measure neural targets of Shh signaling, we sought to profile the genes upregulated by Hh signaling in the ventral neural tube to obtain a valid dataset. To obtain ventral-specific markers, we generated retinoic acid-treated EBs grown in the presence or absence of HH-Ag. We did not observe induction of ventral Hh markers in RA-treated constitutive Gli1FLAG EBs and used these for the control, baseline set. The presence of FoxA2, Nkx2.9 and Nkx6.1 amongst the top 10 genes based on expression levels suggests that profiling significantly enriches for Hh-dependent cell types. As expected, the benchmark standard Gli1 was not up-regulated in our array, since it is constitutively expressed in the control as well.
Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning.
No sample metadata fields
View SamplesNatural killer (NK) cells are lymphocytes that participate in immune responses through their cytotoxic activity and secretion of cytokines and chemokines. They can be activated by interaction with ligands on target cells or by soluble mediators such as cytokines. In addition, soluble HLA-G, a major histocompatibility complex molecule secreted by fetal trophoblast cells during early pregnancy, stimulates resting NK cells to secrete proinflammatory and proangiogenic factors. Human NK cells are abundant in uterus, where they remain after implantation. Soluble HLA-G is endocytosed into early endosomes of NK cells where its receptor, CD158d, initiates a signaling cascade through DNA-PKcs, Akt and NF-kB3. The physiological relevance of this endosomal signaling pathway, and how the fate and function of NK cells during early pregnancy is regulated, is unknown. Here we show that soluble agonists of CD158d trigger DNA damage response signaling and p21 (CIP1/WAF1) expression to promote senescence in primary NK cells. CD158d engagement resulted in morphological alterations in cell size and shape, chromatin remodeling, and survival in the absence of proliferation, all hallmarks of senescence. Microarray analysis revealed a senescence signature of upregulated genes upon sustained activation through CD158d. The proinflammatory and proangiogenic factors secreted by these metabolically active NK cells are part of a senescence associated secretory phenotype (SASP) that promoted tissue remodeling and angiogenesis as assessed by functional readouts of vascular permeability and endothelial cell tube formation. We propose that ligand-induced senescence is a molecular switch for the sustained activation of NK cells in response to soluble HLA-G for the purpose of remodeling the maternal vasculature in early pregnancy.
Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling.
Specimen part, Treatment, Time
View Samples