Protein-RNA interactions are fundamental to core biological processes, such as mRNA splicing, localization, degradation and translation. We have developed a photoreactive nucleotide-enhanced UV crosslinking and oligo(dT) purification approach to identify the mRNA-bound proteome using quantitative proteomics and to display the protein occupancy on mRNA transcripts by next-generation sequencing (Baltz and Munschauer et al. 2012). Our current work focuses on streamlining and extending protein occupancy profiling on poly(A)-RNA. Our objectives are to identify previously unknown protein-bound transcripts and, more importantly, to assess global and local differences in protein occupancy across different biological conditions. To this end, we have implemented poppi, the first pipeline for differential analysis of protein occupancy profiles. We have applied our analysis pipeline to pinpoint changes in occupancy profiles of MCF7 cells against already published HEK293 cells [GSE38157]. Overall design: We generated protein occupancy cDNA libraries for two biological replicates. Briefly, we crosslinked 4SU-labeled MCF7 cells and purified protein-mRNA complexes using oligo(dT)-beads. The precipitate was treated with RNAse I to reduce the protein-crosslinked RNA fragments to a length of about 30-60 nt. To remove non-crosslinked RNA, protein-RNA complexes were precipitated with ammonium sulfate and blotted onto nitrocellulose. The RNA was recovered by Proteinase K treatment, ligated to cloning adapters, and reverse transcribed. The resulting cDNA libraries were PCR-amplified and next-generation sequenced.
Differential protein occupancy profiling of the mRNA transcriptome.
No sample metadata fields
View SamplesDermal lymphatics form a network that connects all the hair follicles in skin and localize in proximity to the Hair Follicle Stem Cell. RNA sequencing analyses of isolated dermal lymphatics at two different time points of the hair follicle cycle (P55 and P70) indicate the existence of dynamic signaling networks associated with lymphatic remodeling, immune trafficking, and HF signaling. Overall design: Prox1CreERT2; ROSA26-LSL-eYFP mice of P55 (Mid Telogen) and P70 (Late telogen) were sacrificed and eYFP positive cells were isolated from the backskin.
Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo.
Treatment, Subject
View SamplesCXCL5, a strong neutrophil-chemoattractant, has been reportet to be expressed in different cancer entities with diverse outcomes in disease progression. Contradictory outcome in disease progression in different tumor entities might be explained by a tumor type specific expression pattern of chemokines, chemokine receptors and growth factors that act in concert with CXCL5. This study evaluates the impact of CXCL5 expression on the tumor mircoenvironment in a syngeneic mouse melanoma model. Overall design: 105 B16F1 and B16F1-CXCL5 murine melanoma were injected intradermally into the flank skin of C57BL/6 J mice. Primary tumors were grown up to 250-350mm³, excised, snap frozen and then processed for RNA sequencing.
CXCL5 as Regulator of Neutrophil Function in Cutaneous Melanoma.
Specimen part, Treatment, Subject
View SamplesHuman embryonic stem cells were differentiated into peripheral sensory neurons via the intermediate generation of neural crest like cell (NCC). Using various markers we identified these cells as LTMR. We then analyzed there complete transcriptional profile in comparison to the intermediate neural crest like cells. Overall design: mRNA expression data of human ESC-derived sensory neuron clusters (10-20 cells) and human ESC-derived neural crest like cells (~100 cells) was generated by illumina deep sequencing
PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors.
No sample metadata fields
View SamplesWe aimed to analyze the effects of Wnt-1 overexpression on the mRNA expression profile of human melanoma in a mouse xenograft model and correlated the results with then presence or absence of lymphangiogenesis and metastasis. Affymetrix gene expression analysis revealed activation of canonical and non-canonical targets genes in response to Wnt-1 as compared with controls. In regard to lymphangiogenic factors, the amount of VEGF-C was the single best marker to correlate with the amount of lymph-angiogenesis.
Wnt1 is anti-lymphangiogenic in a melanoma mouse model.
Cell line, Treatment
View SamplesA study evaluating the effect of stress resistance selection of Drosophila melanogaster.
Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors.
No sample metadata fields
View SamplesTranscriptional variation, also called expression level polymorphism (ELP), contributes to intra-specific phenotypic variation in many organisms. Differentially expressed transcripts are typically enriched for stress-related genes, suggesting that differences in response to the environment are a particularly common point of divergence among gentoypes. Analysis of ELPs also has been suggested as a way to assess unintended consequences of transgene introduction; however, it is important that interpretation of transcriptional changes be performed within the context of potential fitness effects. In these studies we sought to examine differential gene expression in response to salinity for two widely used Arabidopsis thaliana ecotypes, Wassilewskija (Ws) and Columbia (Col), and a single gene mutation (glabrous, gl1-1) in the Col background (Col(gl)), in relation to genetic, phenotypic, and fitness differences.
Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes.
Age, Specimen part
View SamplesMannitol is a putative osmoprotectant contributing to salt tolerance in several species. Arabidopsis plants transformed with the mannose-6-phosphate reductase (M6PR) gene from celery were dramatically more salt tolerant (at 100mM NaCl) as exhibited by reduced salt injury, less inhibition of vegetative growth, and increased seed production relative to the wild type (WT). When treated with 200mM NaCl, transformants produced no seeds, but did bolt, and exhibited less chlorosis/necrosis and greater survival and dry weights than the WT. Without salt there were no M6PR effects on growth or phenotype, but expression levels of 2272 genes were altered. Many fewer differences (1039) were observed between M6PR and WT plants in the presence of salt, suggesting that M6PR pre-conditioned the plants to stress. Previous work suggested that mannitol is an osmoprotectant, but mannitol levels are invariably quite low, perhaps inadequate for osmoprotectant effects. In this study, transcriptome analysis reveals that the M6PR transgene activated the downstream abscisic acid (ABA) pathway by up-regulation of ABA receptor genes (PYL4, PYL5, and PYL6) and down-regulation of protein phosphatase 2C genes (ABI1 and ABI2). In the M6PR transgenic lines there were also increases in transcripts related to redox and cell wall-strengthening pathways. These data indicate that mannitol-enhanced stress tolerance is due at least in part to increased expression of a variety of stress-inducible genes.
Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes.
Age, Specimen part
View SamplesEngineered abiotic stress resistance is an important target for increasing agricultural productivity.There are concerns, however, regarding possible ecological impacts of transgenic crops. In contrast to the first wave of transgenic crops, many abiotic stress resistance genes can initiate
Comparison of salt stress resistance genes in transgenic Arabidopsis thaliana indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects.
Age, Specimen part, Treatment
View SamplesWe used microarrays to investigate the transcriptome of 6 days old male flies exposed to either 15 or 25 C development at either constant or fluctuating temperatures. Further, we investigated gene expression at benign (20C) and high (35C) temperatures
Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.
Sex
View Samples