KAP1 (TRIM28) is a transcriptional regulator in embryonic development that controls stem cell self-renewal, chromatin organization and the DNA damage response, acting as an essential co-repressor for KRAB family zinc finger proteins (KRAB-ZNF). To gain insight into the function of this large gene family, we developed an antibody that recognizes the conserved zinc fingers linker region (ZnFL) in multiple KRAB-ZNF. Here we report that the expression of many KRAB-ZNF along with active SUMOlyated KAP1 is elevated widely in human breast cancers. KAP1 silencing in breast cancer cells reduced proliferation and inhibited the growth and metastasis of tumor xenografts. Conversely, KAP1 overexpression stimulated cell proliferation and tumor growth. In cells where KAP1 was silenced, we identified multiple downregulated genes linked to tumor progression and metastasis, including EREG/epiregulin, PTGS2/COX2, MMP1, MMP2 and CD44, along with downregulation of multiple KRAB-ZNF proteins. KAP1-dependent stabilization of KRAB-ZNF required direct interactions with KAP1. Together, our results show that KAP1-mediated stimulation of multiple KRAB-ZNF contributes to the growth and metastasis of breast cancer.
KAP1 promotes proliferation and metastatic progression of breast cancer cells.
Cell line
View SamplesCentral corneal thickness (CCT) exhibits broad variability. We determined the corneal gene expression profile three mouse strains with distinct corneal thickness: C57BLKS/J (88.6 um), SJL/J (123.5 um), and C57BL/6J (100.1 um).
Genetic dependence of central corneal thickness among inbred strains of mice.
No sample metadata fields
View Samplesbulk breast tumor RNA from patient
X chromosomal abnormalities in basal-like human breast cancer.
No sample metadata fields
View SamplesGene expression for 47 human breast tumor cases;
X chromosomal abnormalities in basal-like human breast cancer.
No sample metadata fields
View SamplesEngineered brain organoids (enCORs) exhibit reproducible neural differentiation and forebrain regionalization. Overall design: Comparison of transcriptomes from bioengineered micropatterned enCORs and spheroids at 20 days and 60 days
Guided self-organization and cortical plate formation in human brain organoids.
Specimen part, Subject, Time
View SamplesBreast carcinoma (BC) have been extensively profiled by high-throughput technologies for over a decade, and broadly speaking, these studies can be grouped into those that seek to identify patient subtypes (studies of heterogeneity) or those that seek to identify gene signatures with prognostic or predictive capacity. The shear number of reported signatures has led to speculation that everything is prognostic in BC. Here we show that this ubiquity is an apparition caused by a poor understanding of the inter- relatedness between subtype and the molecular determinants of prognosis. Our approach constructively shows how to avoid confounding due to a patient's subtype, clinicopathological or treatment profile. The approach identifies patients who are predicted to have good outcome at time of diagnosis by all available clinical and molecular markers, but who experience a distant metastasis within five years. These inherently difficult patients (~7% of BC) are prioritized for investigations of intra-tumoral heterogeneity.
The prognostic ease and difficulty of invasive breast carcinoma.
Age, Disease stage, Time
View SamplesThe motor neurons innervating the muscles of facial expression are organized into somatotopic hindbrain clusters termed subnuclei. Each of the medial, intermediate, dorsolateral, and lateral subnuclei gives rise to a specific branch of the facial motor nerve (cranial nerve VII). How subnucleus-specific gene expression could mediate the accurate development of facial nerve projections was not well understood.
Etv1 Controls the Establishment of Non-overlapping Motor Innervation of Neighboring Facial Muscles during Development.
Sex, Specimen part
View SamplesStaphylococcus aureus produces the cyclic dipeptides tyrvalin and phevalin (aureusimine A and B, respectively).
Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression.
Specimen part, Treatment
View SamplesTumor protein p53 is a key regulator of several cellular pathways, including DNA repair, cell cycle and angiogenesis. Kevetrin exhibits p53-dependent as well as independent activity in solid tumors, while its effects on leukemic cells remain unknown. We analyzed the response of acute myeloid leukemia (AML) cell lines (TP53 wild-type: OCI-AML3 and MOLM-13; and TP53-mutant: KASUMI-1 and NOMO-1) to kevetrin at a concentration range of 85-340 μM. Kevetrin induced cell growth arrest and apoptosis in all cell lines and in primary cells, with TP53-mutant models displaying a higher sensitivity and p53 induction. Gene expression profiling revealed a common core transcriptional program altered by drug exposure and the downregulation of glycolysis, DNA repair and unfolded protein response signatures. These findings suggest that kevetrin may be a promising therapeutic option for patients with both wild-type and TP53-mutant AML.
Kevetrin induces apoptosis in TP53 wild‑type and mutant acute myeloid leukemia cells.
Treatment
View SamplesThe purpose of the dataset is to analyze expression of genes induced by KRAS and regulated by TBK1
Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.
Specimen part
View Samples