Hydrogen peroxide is known to promote skin keratinocyte migration, although the mechanism of action is unclear. In an attempt to identify signaling pathways regulated by hydrogen peroxide in the skin, 3 day post fertilized (dpf) zebrafish larvae (nacre strain) were treated with 3mM hydrogen peroxide for 2 hours and subjected to RNA-seq analyses. Pools of about 1000 embryos for each of three biological replicates were derived from 5 independent mating pairs and raised to larval stages until 3 dpf. All larvae were subsequently homogenized in Trizol and total RNA was extracted using a chloroform extraction protocol treated with DNAse. Messenger RNA (mRNA) was subsequently purified from total RNA using biotin-tagged poly dT oligonucleotides and streptavidin-coated magnetic beads, followed by quality control using an Agilent Technologies 2100 Bioanalyzer (values >7 were used for sequencing). The poly(A)-tailed mRNA samples were fragmented and double-stranded cDNA generated by random priming for deep sequencing studies. Overall design: 6 samples total were analyzed. 3 untreated, and 3 hydrogen peroxide treated (3mM, 2hr)
Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing.
No sample metadata fields
View SamplesHeterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2 plays a pivotal role in vitamin D receptor (VDR) signaling by acting as a vitamin D response element (VDRE)-binding protein (VDRE-BP). Transcriptional regulation by active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) involves occupancy of VDRE by VDRE-BP or 1,25(OH)2D3 bound-VDR. This relationship is disrupted by over-expression of VDRE-BP and can cause a form of human hereditary vitamin D-resistant rickets (HVDRR). DNA array analyses using B-cells from an HVDRR patient and matched control defined a sub-cluster of genes where 1,25(OH)2D3-regulated transcription was abrogated by over-expression of VDRE-BP. Amongst these, the DNA-damage-inducible transcript 4 (DDIT4), an inhibitor of mammalian target of rapamycin (mTOR) signaling, was also induced by 1,25(OH)2D3 in human osteoblasts.
Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling.
Sex, Specimen part, Subject
View SamplesHeterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC1/C2) functions as an RNA splicing regulator through co-transcriptional association with nascent mRNA. HnRNPC1/C2 can also bind to double-stranded DNA as a vitamin D response element-binding protein (VDRE-BP), thereby regulating transcriptional activity of the vitamin D receptor (VDR) bound to 1,25-dihydroxyvitamin D (1,25(OH)2D). In this way hnRNPC1/C2 may act as a coupling factor for 1,25(OH)2D-directed transcription and RNA splicing. Studies using MG63 osteoblastic cells confirmed that 1,25(OH)2D-VDR mediated induction of the gene for the enzyme 24-hydroxylase (CYP24A1), involved CYP24A1-specific chromatin and RNA immunoprecipitation of hnRNPC1/C2. Furthermore, small interfering (siRNA) knockdown of hnRNPC1/C2 in MG63 cells and was associated with dysregulated expression of CYP24A1 and an alternatively spliced form of CYP24A1 (CYP24A1-variant 2). Genome-wide analysis of RNA expression and alternative splicing indicated that dual role of hnRNPC1/C2 in directing 1,25(OH)2D-mediated gene expression is not restricted to the classical VDR-target CYP24A1. Knockdown of hnRNPC1/C2 resulted in 3500 differentially expressed genes (DEG), and treatment with 1,25(OH)2D 324 DEG. A further 87 DEG were only observed in 1,25(OH)2D-treated cells in hnRNPC1/C2 knockdown cells. HnRNPC1/C2 knockdown or 1,25(OH)2D treatment also induced alternative splicing (AS) (5039 and 310 AS events respectively). Combined hnRNPC1/C2 knockdown and 1,25(OH)2D treatment resulted in significant overlap between DEG and AS genes, but this was not observed for 1,25(OH)2D treatment alone. These data indicate that hnRNPC1/C2 can act to couple transcriptional and splicing responses to 1,25(OH)2D by binding to both DNA and RNA. Similar mechanisms may also exist for other members of the hnRNP and steroid receptor family. Overall design: Human MG63 osteosarcoma cells (American Type Culture Collection, CRL-1427) were cultured in Dulbecco’s modified Eagle medium (DMEM, high glucose, Gibco, 11995-065) supplemented with 10% Fetal Bovine Serum (FBS) cultured at 37oC with 5% CO2. Crystalline 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, Enzo Life Sciences, BML-DM200-0050) was reconstituted in ethanol. Ethanol (0.1%) was used as vehicle treatment. RNA-seq analysis was carried out using total RNA extracted from MG63 cells using RNAeasy mini kit (Qiagen, 74104), with on-column DNase treatment to remove contaminating genomic DNA. cDNA libraries were prepared using the Illumina TruSeq RNA Sample Preparation Kit (illumina). High-throughput sequencing was performed using an Illumina HiSeq2500 (paired-end, non-strand-specific 107-bp read length). Knockdown and control samples were sequenced together in two flowcells on four lanes.
Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells.
No sample metadata fields
View SamplesWild-type and exo mutant (SALK_098602) were grown in parallel in three independent experiments in a greenhouse. 3 x 2 profiles were established.
The extracellular EXO protein mediates cell expansion in Arabidopsis leaves.
Age, Specimen part, Time
View SamplesHuman neonates and older adults frequently exhibit a reduced capacity to control microbial infections. A variety of mechanisms involving both the innate and adaptive immune systems have been proposed to contribute to these deficiencies. The emergence of RNA sequencing (RNA-seq) as an accurate and quantitative method for examining mRNA levels provides an opportunity to compare transcriptional responses to a stimulus at a global scale in neonates, adults, and older adults. An examination of ex vivo monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection (with cord blood monocytes representing neonatal monocytes) revealed extensive similarities between all three age groups, with only a small number of genes exhibiting statistically significant differences. Using transcription factor motif analyses and RNA-seq data sets from a variety of mouse mutants, the most significant neonatal deficiencies corresponded to genes that require interferon response factor-3 or type 1 interferon signaling for their activation. In older adults, the most striking difference was broad, low-level activation of inflammatory genes prior to stimulation, consistent with prior evidence of a chronic inflammatory state in older adults. These results demonstrate the value of quantitative RNA-seq analyses and the feasibility of cross-species comparisons between well-defined mouse networks and human data sets. Overall design: RNA-seq of primary cells from three independent donors in three different age-groups across 3 time-points stimulated with either LPS or Listeria monocytogenes.
Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults.
No sample metadata fields
View SamplesMuch has been learned about transcriptional cascades and networks from large-scale systems analyses of high-throughput data sets. However, analysis methods that optimize statistical power through simultaneous evaluation of thousands of ChIP-seq peaks or differentially expressed genes possess substantial limitations in their ability to uncover mechanistic principles of transcriptional control. By examining nascent transcript RNA-seq, ChIP-seq, and binding motif data sets from lipid A-stimulated macrophages with increased attention to the quantitative distribution of signals, we identified unexpected relationships between the in vivo binding properties of inducible transcription factors, motif strength, and transcription. Furthermore, rather than emphasizing common features of large clusters of co-regulated genes, our results highlight the extent to which unique mechanisms regulate individual genes with key biological functions. Our findings demonstrate the mechanistic value of stringent interrogation of well- defined sets of genes as a complement to broader systems analyses of transcriptional cascades and networks. Overall design: Bone marrow-derived macrophages derived from C57Bl/6, Myd88-/-, Trif-/-, Irf3-/-, Ifnar-/-, and RelA-/- mice were stimulated with lipid A; C57Bl/6 macrophages were stimulated with lipid A in the presence of MAPK inhibitors or cycloheximide, or stimulated with PAM3CSK4 for 0, 15, 30, 60, and 120 minutes, or stimulated with lipid A for 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 minutes. Two biological replicates were generated for each time point for each treatment type.
A Stringent Systems Approach Uncovers Gene-Specific Mechanisms Regulating Inflammation.
No sample metadata fields
View SamplesWe have investigated the p53-dependent stress response in medium spiny neurons (MSNs) that degenerate in Huntingtons disease. To induce p53 signaling cascade, we have genetically inactivated by the Cre/loxP system the essential RNA polymerase I (Pol I) transcription factor TIF-IA, leading to stabilization of p53 and induction of p53-dependent apoptosis.
A neuroprotective phase precedes striatal degeneration upon nucleolar stress.
Age, Specimen part
View SamplesWe defined the C/EBPa signature characterized by a set of genes which are upregulated upon C/EBPa activation. In order to identify the C/EBPa signature, we performed microarray gene expression analysis of K562 cells stably expressing p42-C/EBPa-ER after activating the C/EBPa construct to translocate to the nucleus for 6 hours with beta-estradiol.
The gene signature in CCAAT-enhancer-binding protein α dysfunctional acute myeloid leukemia predicts responsiveness to histone deacetylase inhibitors.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma.
Specimen part
View SamplesPREX2 truncating mutations occur in melanoma. We used microarray based gene expression profiling to compare expression patterns between xenografts harboring control GFP, wt PREX2 or various human relevant PREX2 mutants
Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma.
Specimen part
View Samples