593 FFPE colorectal cancer samples were used to generate three prediction models: Recurrence prediction, 5FU efficacy prediction, and FOLFOX efficacy prediction
Building personalized treatment plans for early-stage colorectal cancer patients.
Specimen part
View SamplesPancreatic cancer is a devastating disease with both local invasion and distant metastasis. Identifying the genes expressed in liver metastases and signatures of metastatic progression would therefore be of particular importance as they could aid in both recurrence prediction as well as representing novel therapeutic targets.
S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells.
Specimen part
View SamplesPancreatic cancer is a devastating disease with both local invasion and distant metastasis. Identifying the genes expressed in liver metastases and signatures of metastatic progression would therefore be of particular importance as they could aid in both recurrence prediction as well as representing novel therapeutic targets.
S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells.
Specimen part
View SamplesWe and others have shown that S100P is highly upregulated during the progression of pancreatic cancer. We used microarrays to look at the target genes regulated by S100P in the pancreatic cancer cell line Panc1.
S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells.
Specimen part, Cell line
View SamplesWe performed microarray analysis to examine the differential gene expression profiles between Prdm1 (Blimp-1)-deleted and control keratinocytes. Keratinocytes isolated from Prdm1-floxed K5-CreER positive (CKO) mice were cultured in the presence of 4OHT to induce deletion of the Prdm1 allele in vitro. Prdm1-floxed K5-CreER positive (CKO) keratinocytes treated with the ethanol solvent control (EtOH) or Prdm1-floxed K5-CreER negative (control) keratinocytes treated with 4OHT or EtOH served as controls. Microarray analyses revealed that there were 93 genes up-regulated and 109 genes down-regulated by more than 2-fold in the CKO + 4OHT group in comparison with the CKO + EtOH, Ctrl + 4OHT or Ctrl + EtOH groups. Several corneocytes-related genes, including Rptn, Lce1f, Krt1 and Lce1d, are significantly down-regulated and several cytokines/chemokines, including Cxcl1, Cxcl2, Cxcl5 and Il24, are significantly up-regulated upon the deletion of Prdm1 in vitro.
Inducible deletion of the Blimp-1 gene in adult epidermis causes granulocyte-dominated chronic skin inflammation in mice.
Specimen part, Treatment
View SamplesAbstract
Breast cancer-associated fibroblasts confer AKT1-mediated epigenetic silencing of Cystatin M in epithelial cells.
No sample metadata fields
View SamplesAlthough the basic anatomical sub-divisions of the larval mosquito gut were established several decades ago, information regarding their exact physiological roles is rather scarce. Several studies have reported differences between larval gut compartments in various morphological and physiological aspects. Unfortunately, the fragmentary and incomplete nature of this information makes it hard to establish clear links to the specific and/or unique physiological roles of each gut region.
A microarray-based analysis of transcriptional compartmentalization in the alimentary canal of Anopheles gambiae (Diptera: Culicidae) larvae.
No sample metadata fields
View SamplesTranscriptional profiling of age-related change of callus formation capability in Arabidopsis hypocotyls
Transcriptome analysis of age-related gain of callus-forming capacity in Arabidopsis hypocotyls.
Specimen part
View SamplesCellular tolerance toward furfural is a complex phenotype involved many genes, and hard to be improved by manipulating individual genes. We previously established exogenous global regulator IrrE mutants that confer Escherichia coli with significantly enhanced tolerance to furfural stress.
Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates.
No sample metadata fields
View SamplesVitamin A is the only known compound that produces spontaneous fractures in rats. In an effort to resolve the molecular mechanism behind this effect, we fed young rats high doses of vitamin A and performed a global transcriptional analysis of diaphyseal bone after one week, i.e. just before the first fractures appeared. Microarray gene expression analysis revealed that 68 transcripts were differentially expressed in hypervitaminotic cortical bone and 118 transcripts were found when the bone marrow was also included. 98% of the differentially expressed genes in the bone marrow sample were up-regulated. In contrast, hypervitaminotic cortical bone without marrow showed reduced expression of 37% of differentially expressed genes. Gene Ontology (GO) analysis revealed that only samples containing bone marrow were associated to a GO term, which principally represented extracellular matrix (ECM). This is consistent with the histological findings of increased endosteal bone formation. Four of the genes in this ECM cluster and four other genes, including Cyp26b1 which is known to be up-regulated by vitamin A, were selected and verified by real-time PCR. In addition, immunohistochemical staining of bone sections confirmed that the bone-specific molecule, osteoadherin (Omd) was up-regulated. Further analysis of the major gene expression changes revealed distinct differences between cortical bone and bone marrow, e.g. there appeared to be augmented Wnt signaling in the bone marrow but reduced Wnt signaling in cortical bone. Moreover, induced expression of hypoxia-associated genes was only found in samples containing bone marrow. Together, these results corroborate our previous observations of compartment-specific effects of vitamin A, with reduced periosteal but increased endosteal bone formation, and suggest important roles for Wnt signaling and hypoxia in the processes leading to spontaneous fractures.
Microarray profiling of diaphyseal bone of rats suffering from hypervitaminosis A.
Sex, Age, Specimen part, Disease
View Samples