Natural killer (NK) cells induce apoptosis in infected and transformed cells and produce immunoregulatory cytokines. At this, NK cells operate in inflammatory and tumor environments low in oxygen (hypoxic) and with immunosuppressive properties. In vitro studies of NK cells are, however, commonly performed in ambient air (normoxia).
Short Term Hypoxia Synergizes with Interleukin 15 Priming in Driving Glycolytic Gene Transcription and Supports Human Natural Killer Cell Activities.
Specimen part, Disease stage
View SamplesDendritic cells (DC) arise from a diverse group of hematopoietic progenitors and have marked phenotypic and functional heterogeneity. We have found previously that activation of protein kinase C beta 2 (PRKCB2) by cytokines or phorbol esters drives normal human CD34(+) hematopoietic progenitors and myeloid leukemic blasts (KG1, K562 cell lines, and primary patient blasts) to differentiate into DC, but the genetic program triggered by PRKCB2 activation that results in DC differentiation is only beginning to be characterized. Of the cPKC isoforms, only PRKCB2 was consistently activated by DC differentiation-inducing stimuli in normal and leukemic progenitors. To examine early changes in gene expression following PRKCB2 activation, we employed the following cell lines: (1) the CD34(+) human acute myeloid leukemia derived cell line KG1, which undergoes DC differentiation following phorbol ester treatment; (2) KG1a, a spontaneously arising differentiation-resistant daughter cell line of KG1 that has lost PRKCB2 expression; (3) clones established from KG1a that stably express exogenous PRKCB2-GFP fusion proteins and are once again able to undergo DC differentiation (KG1a-PRKCB2-GFP Clone E9 and Clone E11). We examined changes in gene expression in these cells following treatment with the phorbol ester PMA (phorbol 12-myristate 13-acetate) for 2 hours. Since KG1 and KG1a differ in PRKCB2 expression but have similar expression of the other protein kinase C isoforms, this protocol will allow for the identification of genes regulated by PRKCB2 activation.
Tumor-induced STAT3 signaling in myeloid cells impairs dendritic cell generation by decreasing PKCβII abundance.
Sex, Age, Specimen part, Cell line, Treatment
View SamplesBMP9 signaling has been implicated in hereditary hemorrhagic telangiectasia and vascular remodeling, acting via the HHT target genes, endoglin and ALK1. This study sought to identify endothelial BMP9-regulated proteins that could affect the HHT phenotype. Gene ontology analysis of cDNA microarray data obtained following BMP9 treatment of primary human endothelial cells indicated regulation of chemokine, adhesion, and inflammation pathways.
BMP9 regulates endoglin-dependent chemokine responses in endothelial cells.
Specimen part
View SamplesPURPOSE: Despite over 70,000 new cases of bladder cancer in the United States annually, patients with advanced disease have a poor prognosis due to limited treatment modalities. We evaluate the role of Aurora A, identified as an upregulated candidate molecule in bladder cancer, in regulating bladder tumor growth.
The investigational Aurora kinase A inhibitor MLN8237 induces defects in cell viability and cell-cycle progression in malignant bladder cancer cells in vitro and in vivo.
Specimen part
View SamplesAnalysis of the effects of three members of the FGF family (FGF1, FGF2 and FGF9) and bone morphogenic protein 4 (BMP4) on myelinating cultures generated from dissociated embryonic spinal cord. The results of both immediate (24 hours, T1 (24 hrs)) and long term treatments (10days, T2) give insights into the cumulative effects of sustained FGF and BMP mediated signal transduction in the pathogenesis of demyelinating diseases.
Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9.
Specimen part, Treatment, Time
View SamplesFailure of remyelination in multiple sclerosis (MS) is associated with inhibition of oligodendrocyte precursor (OPC) differentiation, but the cellular and molecular mechanisms involved remain poorly understood. We now report inflammatory demyelination in MS is associated with localized expression of fibroblast growth factor 9 (FGF9) by oligodendrocytes and to a lesser extent astrocytes, and demonstrate FGF9 inhibits myelination and remyelination in vitro. This inhibitory activity is reversible and due to an off target FGF9-dependent effect on astrocytes that disrupts in the growth factor milieu required to support myelination.
Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9.
Specimen part, Treatment, Time
View SamplesMicroarray based mRNA profiling was used to identify the mechanism of action for the small molecule b-AP15.
Inhibition of proteasome deubiquitinating activity as a new cancer therapy.
Cell line, Treatment
View SamplesJoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.
MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.
Specimen part, Cell line
View SamplesAmplification of MYCN is the most prominent genetic marker of high-stage neuroblastoma, a childhood tumor originating from the neural crest. We generated a cell line (mNB-A1) from tumors developed in transgenic mouse and treated these cells with DMSO (n=6), the BRD4-inhibitor JQ1 (n=3) or the AURKA-inhibitor MLN8237 (n=3) for 24 h.
A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies.
Specimen part, Cell line, Treatment
View SamplesAmplification of MYCN is the most prominent genetic marker of high-stage neuroblastoma, a childhood tumor originating from the neural crest.
A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies.
Cell line
View Samples