We have develped a novel method of making siRNAs (named pro-siRNA for prokaryotic siRNA). To evaluate off-targeting of pro-siRNA, we compared the mRNA expression profiles of HeLa-d1EGFP cells transfected with 4 nM EGFP siRNAs and pro-siRNAs by microarray. Overall design: We used microarray to study the off-target effect of siRNAs in the HeLa-d1EGFP cell line. After transfection of siRNAs for 24 hrs, RNA were extracted using Trizol. Deep sequencing libraries were generated using the NEBNext Ultra RNA Library Prep Kit for Illumina (NEB #E7530). HeLa-d1EGFP cells are HeLa cells stably expressing d1EGFP gene. EGFP siRNA is a siRNA made by chemical synthesis. EGFP100 and EGFPFL are pro-siRNAs made from either a 100 bp hairpin or a full length hairpin targeting EGFP coding sequence.
Efficient and specific gene knockdown by small interfering RNAs produced in bacteria.
Specimen part, Cell line, Subject
View SamplesWe have develped a novel method of making siRNAs (named pro-siRNA for prokaryotic siRNA). To evaluate off-targeting of pro-siRNA, we compared mRNA expression profile of HeLa-d1EGFP cells transfected with 4 nM LMNA siRNAs and pro-siRNAs by microarray.
Efficient and specific gene knockdown by small interfering RNAs produced in bacteria.
Cell line
View SamplesmiR-34a is strongly induced upon TPA-induced megakaryocyte differentiation of K562 cells. To investigate the gene networks regulated by this miRNA during the process of differentiation we performed gene microarray analysis in K562 cells overexpressing miR-34a or a control sequence.
miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53.
Cell line
View SamplesExamining changes in expression in a mouse model of SBMA compared to WT littermates. Overall design: Mice sacrificed at 14wks of age had LABC isolated and cDNA generated and sequenced on an illumina platform.
Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction.
Specimen part, Subject
View SamplesOur findings demonstrate beneficial effects of enhancing transactivation function of the ligand-activated polyQ AR and indicate that the SUMOylation pathway may provide new targets for therapeutic intervention. Overall design: We mutated conserved lysines in the polyQ AR that are targeted by SUMO, a modification that inhibits AR transactivation function.
Rescue of Metabolic Alterations in AR113Q Skeletal Muscle by Peripheral Androgen Receptor Gene Silencing.
No sample metadata fields
View SamplesThe gene expression of 6 different mouse xenografts initiated by BPLER cells analyzed by microarray.
A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells.
No sample metadata fields
View SamplesDesmin is a cytoskeletal protein in muscle involved in integrating cellular space and transmitting forces. In this study we sought to determine the effects of desmin deletion on skeletal muscle at the transcriptional level across many pathways of muscle physiology.
Skeletal muscle fibrosis develops in response to desmin deletion.
Specimen part
View SamplesExpansion of a polyglutamine (polyQ) tract in the gene for the androgen receptor (AR) results in partial loss of transactivation function and causes spinobulbar muscular atrophy (SBMA). Modification of AR by small ubiquitin-like modifier (SUMO) reduces AR function in a promoter context-dependent manner.
Disrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor-mediated disease.
Cell line
View SamplesKaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). In sub-Saharan Africa, the high prevalence of both HIV-1 and KSHV has made KS a leading cancer in the region, associated with poor prognosis and high mortality due to late medical presentation and advanced disease stages. A better understanding of the cellular and viral transcriptome profiles during neoplastic growth will aid in the definition of biomarkers and cellular functions associated with KS tumorigenesis and progression. Our approach is to examine the transcriptome profile in actual KS lesions versus non-cancer tissues from the same individual for a total of four male African epidemic KS patients. These patients have undetectable HIV-1 plasma viral load after successful anti-retroviral therapy. Our results capture the cellular complexity of in vivo lesion environment and provide a marked contrast to those derived from in vitro monoculture models. The findings demonstrate that latency and immune modulation related functions dominate the viral gene expression pattern. Moreover, KSHV significantly affected the cellular transcriptome profile with genes involved in lipid and glucose metabolism disorder pathways being the most substantially dysregulated. Despite the implied infiltration of immune cells into the lesions as predicted by CIBERSORT, KS tumor continued to progress, suggesting immunological dysfunction in these KS patients despite control of HIV-1 viremia. Lastly, there is limited overlap of our in vivo dataset with in vitro studies, suggesting a limitation of in vitro KS models. Overall design: RNA-seq of Kaposi's sarcoma lesions and control tissues
RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism.
Specimen part, Subject
View SamplesWe describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.
Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Cell line
View Samples