We were interested to explain why p53 binds some high affinity sites in contrast to other high affinity sites that are not bound by p53.
p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy.
Cell line, Treatment
View SamplesNormal cells require continuous exposure to growth factors, in order to cross a restriction point and commit to cell cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and enables restriction point crossing. Through integration of comprehensive proteomic and transcriptomic analyses of each pulse, we identified three processes that regulate restriction point crossing: (i) The first pulse induces essential metabolic enzymes and activates p53-dependent restraining processes. (ii) The second pulse eliminates, via the PI3K/AKT pathway, the suppressive action of p53, as well as (iii) sets an ERK-EGR1 threshold mechanism, which digitizes graded external signals into an all-or-none decision obligatory for S-phase entry. Together, our findings uncover novel gating mechanisms, which ensure that cells ignore fortuitous growth factors, and undergo proliferation only in response to consistent mitogenic signals.
Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals.
Specimen part, Cell line
View SamplesLevels of C/EBP are low in myeloid blast crisis (BC) of chronic myelogenous leukemia (CML) and its expression in p210BCR/ABL-expressing hematopoietic cells induces granulocytic differentiation, inhibits proliferation and suppresses leukemogenesis. To assess the mechanisms involved in these effects, C/EBP targets were identified by microarray analyses. Upon C/EBP activation, expression of c-Myb and GATA-2 was repressed in 32D-BCR/ABL, K562 and CML-BC primary cells but only c-Myb levels decreased slightly in CD34+ normal progenitors. The role of these two genes for the biological effects of C/EBP was assessed by perturbing their expression in K562 cells. Expression of c-Myb blocked the proliferation inhibition and differentiation-inducing effects of C/EBP while c-Myb siRNA treatment enhanced C/EBP-mediated proliferation inhibition and induced changes in gene expression indicative of monocytic differentiation. GATA-2 expression suppressed the proliferation inhibitory effect of C/EBP but blocked in part the effect on differentiation; GATA-2 siRNA treatment had no effects on C/EBP induction of differentiation but inhibited proliferation of K562 cells, alone or upon C/EBP activation. In summary, the effects of C/EBP in p210BCR/ABL -expressing cells depend, in part, on transcriptional repression of c-Myb and GATA-2. Since perturbation of c-Myb and GATA-2 expression has non identical consequences for proliferation and differentiation of K562 cells, the effects of C/EBP appear to involve different transcription-regulated targets.
Transcriptional repression of c-Myb and GATA-2 is involved in the biologic effects of C/EBPalpha in p210BCR/ABL-expressing cells.
No sample metadata fields
View SamplesThe ability of oncogenes to provoke cancer is harnessed by regulators that control cell proliferation or induce apoptosis, and bypass of these checkpoints is a hallmark of malignancies. Myc oncoproteins are overexpressed in ~70% of all cancers and induce numerous transcription targets that regulate cell growth, metabolism, and the ribosome machinery. We used the E-Myc mouse model from which one can directly compare expression profiles of wild type versus Myc-expressing B220+ pre-malignant lymphocytes and also queried differences in gene expression that ensue following the neoplastic switch to lymphoma (Nilsson et al., 2005 - PMID:15894264 and Keller et al. 2010 - PMID:20598117).
Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation.
Specimen part
View SamplesExpression data from NIH-3T3 cells left uninfected or infected with MCMV for 2, 4 or 6h on total RNA as well as newly transcribed RNA labeled for 1-2, 3-4, and 5-6hpi. For newly transcribed RNA, the isolated RNA was labeled for 1h and separated from total cellular RNA following Trizol RNA preparation and thiol-specific biotinylation. We used microarrays to analyze the effects of MCMV infection in total and newly transcribed RNA.
Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection.
Disease, Cell line, Time
View SamplesNF1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing FoxF1.
Forkhead Box F1 promotes breast cancer cell migration by upregulating lysyl oxidase and suppressing Smad2/3 signaling.
Specimen part, Cell line
View SamplesPrimordial follicle assembly is the process by which ovarian primordial follicles are formed. During follicle assembly oocyte nests break down and a layer of pre-granulosa cells surrounds individual oocytes to form primordial follicles. The pool of primordial follicles formed is the source of oocytes for ovulation during a females reproductive life. Complex networks of cellular signaling and gene expression are essential for any biological process. A systems biology experimental approach provides a global view of these gene relationships in a particular developmental process. The current study utilized a systems approach to detect all genes that are differentially expressed in response to seven different growth factor and hormone treatments known to influence primordial follicle assembly in a neonatal rat ovary culture system. One novel growth factor, basic fibroblast growth factor (FGF2), was experimentally determined to inhibit follicle assembly. The different growth factor and hormone treatments were all found to affect the same physiological pathways, but each treatment affected a unique set of differentially expressed genes (signature gene set). A gene bionetwork analysis identified gene modules of coordinately expressed interconnected genes and it was found that different gene modules appear to accomplish distinct tasks during primordial follicle assembly. Unique gene networks were identified for a number of the modules and signature gene sets. Predictions of physiological pathways important to follicle assembly were validated using ovary culture experiments in which ERK1/2 (MAPK1) activity was increased. A number of the highly interconnected genes in these gene networks have previously been linked to primary ovarian insufficiency (POI) and polycystic ovarian disease syndrome (PCOS). Observations have identified novel factors and gene networks that regulate primordial follicle assembly. This systems approach has helped elucidate the molecular control of primordial follicle assembly and provided potential therapeutic targets for the treatment of ovarian disease.
Gene bionetworks that regulate ovarian primordial follicle assembly.
Sex, Specimen part, Treatment
View SamplesMutations in repulsive guidance molecule c (RGMc) / hemojuvelin (HJV) cause juvenile hemochromatosis, an aggravated iron overload disorder that presents early in life. Patients with juvenile hemochromatosis, and RGMc knockout mice, have diminished expression of the key iron-regulatory peptide, hepcidin. This suggests that RGMc plays a critical role in the regulation of iron homeostasis; however the mechanisms of RGMc actions are unknown. Recent studies have shown that RGMc directly binds to the growth factors, bone morphogenetic protein 2 and 6 (BMP2 and BMP6), and it is possible that this interaction regulates aspects of iron metabolism.
Soluble repulsive guidance molecule c/hemojuvelin is a broad spectrum bone morphogenetic protein (BMP) antagonist and inhibits both BMP2- and BMP6-mediated signaling and gene expression.
Specimen part
View SamplesNeurotrophins are growth factors that are known to have a role in promoting cell survival and differentiation. The focus of the current study is to examine the role of neurotrophins in regulating ovarian primordial follicle development. Ovaries from 4-day old rats were placed into organ culture and cultured for 10 days in the absence or presence of neurotrophin-3 (NT3), brain-derived neurotrophic factor (BDNF), or nerve growth factor (NGF). Treatment of ovaries with NT3 resulted in a significant (P<0.01) increase in primordial follicle development (i.e. primordial to primary follicle transition). Treatment with BDNF at high doses of 100250 ng/ml also significantly (P<0.01) increased primordial follicle development, but NGF had no effect. Immunohistochemical studies determined that NT3 was present in granulosa cells, interstitial tissue, and in the oocytes of primordial and primary follicles. The NT3 receptor NTRK3 was present in oocytes at all stages of development. Analysis of ovaries that contain predominantly primordial follicles demonstrated the transcripts for NT3, NTRK3, NGF, and the BDNF/neurotrophin-4 (NT4) receptor NTRK2 are expressed, while BDNF, NT4, and the NGF receptor NTRK1 are not detectable. Inhibition of the NTRK3 receptor with the tyrophostin AG 879 resulted in oocyte death and a significant (P<0.01) reduction in follicle pool size. Inhibition of the NTRK receptors with K252a slowed primordial to primary follicle transition. A microarray analysis demonstrated that a small number of genes were differentially expressed after NT3 treatment. Observations indicate that the neurotrophin NT3, acting through the NTRK3 receptor in oocytes, promotes the primordial to primary follicle transition. Reproduction (2009) 138, pp. 697-707
Neurotrophin NT3 promotes ovarian primordial to primary follicle transition.
Sex, Specimen part
View SamplesPrimordial follicle assembly is a process that occurs in the embryonic or early post natal ovary in which oocyte nests break down to form individual primordial follicles. The size of this initial pool of primordial follicles in part determines the reproductive lifespan of the female. Connective tissue growth factor (CTGF) was identified as a potential regulatory candidate for this process in a previous microarray analysis of follicle development. The current study examines the effects of CTGF and associated transforming growth factor beta 1 (TGFbeta-1) on follicle assembly. Ovaries were removed from newborn rat pups and placed in an organ culture system for two days to measure the effect of these factors on follicle assembly. In addition, ovaries were cultured and treated for ten days to determine the potential of CTGF and TGFbeta-1 to manipulate the primordial follicle pool size over a longer developmental time period. The ovaries treated with CTGF for two days were found to have an increased proportion of assembled follicles. TGFbeta-1 had no effect on primordial follicle assembly and in combination with CTGF decreased oocyte number in the ovary after two days of culture. Over ten days of treatment only the combined treatment of CTGF and TGFbeta-1 was found to cause an increase in the proportion of assembled follicles. Interestingly, treatment with TGFbeta-1 alone resulted in fewer total oocytes in the ovary and decreased the primordial follicle pool size after ten days of culture. Observations indicate that CTGF alone or in combination with TGFbeta-1 stimulates primordial follicle assembly and TGFbeta-1 can decrease the primordial follicle pool size. CTGF was found to regulate the ovarian transcriptome during primordial follicle assembly and an integrative network of genes was identified. CTGF is one of the first growth factors shown to promote primordial follicle assembly, while TGFbeta-1 is one of the first factors shown to decrease the primordial follicle pool size. These observations suggest the possibility of manipulating primordial follicle pool size and influencing female reproductive lifespan.
Induction of ovarian primordial follicle assembly by connective tissue growth factor CTGF.
Sex, Specimen part
View Samples