CTCF and cohesinSA-1 are regulatory proteins involved in a number of critical cellular processes including transcription, maintenance of chromatin domain architecture, and insulator function. To assess changes in the CTCF and cohesinSA-1 interactomes during erythropoiesis, chromatin immunoprecipitation coupled with high throughput sequencing and mRNA transcriptome analyses via RNA-seq were performed in primary human HSPC hematopoietic stem and progenitor cells (HSPC) and primary human erythroid cells from single donors. Sites of CTCF and cohesinSA-1 co-occupancy were enriched in gene promoters in HSPC and erythroid cells compared to single CTCF or cohesin sites. Cell type-specific CTCF sites in erythroid cells were linked to highly expressed genes, with the opposite pattern observed in HSPCs. Chromatin domains were identified by ChIP-seq with antibodies against trimethylated lysine 27 histone 3, a modification associated with repressive chromatin. Repressive chromatin domains increased in both number and size during hematopoiesis, with many more repressive domains in erythroid cells than HSPCs. CTCF and cohesinSA-1 marked the boundaries of these repressive chromatin domains in a cell-type specific manner. These genomic data support the hypothesis that CTCF and cohesinSA-1 have multiple roles in the regulation of gene expression during erythropoiesis including transcriptional regulation at gene promoters and maintenance of chromatin architecture. Overall design: CD34+-selected stem and progenitor cells were expanded for three days in the absence of EPO. The cells were further cultured in the presence of EPO, and cells differentiated into R3/R4 nucleated erythroid cells. RNA was isolated from three biological replicates of each cell type and sequencing libraries were prepared from poly A selected RNA.
CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.
No sample metadata fields
View SamplesT follicular helper (Tfh) cells are a subset of CD4+ T helper (Th) cells that migrate into germinal centers and promote B cell maturation into memory B and plasma cells. Tfh cells are necessary for promotion of protective humoral immunity following pathogen challenge, but when aberrantly regulated, drive pathogenic antibody formation in autoimmunity and undergo neoplastic transformation in angioimmunoblastic T-cell lymphoma and other primary cutaneous T-cell lymphomas. Limited information is available on the expression and regulation of genes in human Tfh cells. Using a fluorescence activated cell sorting-based strategy, we obtained primary Tfh and non-Tfh T effector (Teff) cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by ChIP-seq, with parallel transcriptome analyses determined by RNA-seq. Tfh cell enhancers were enriched near genes highly expressed in lymphoid cells or involved in lymphoid cell function, with many mapping to sites previously associated with autoimmune disease in genome-wide association studies. A group of active enhancers unique to Tfh cells associated with differentially expressed genes was identified. Fragments from these regions directed expression in reporter gene assays. These data provide a significant resource for studies of T lymphocyte development and differentiation and normal and perturbed Tfh cell function. Overall design: Using a fluorescence activated cell sorting-based strategy, we obtained primary Tfh and non-Tfh T effector (Teff) cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by ChIP-seq, with parallel transcriptome analyses determined by RNA-seq.
Global transcriptome analysis and enhancer landscape of human primary T follicular helper and T effector lymphocytes.
No sample metadata fields
View SamplesYin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. In mice, Yy1 null mutants die early in gestation while Yy1 hypomorphs die at birth from lung defects. We studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 mutation in lung epithelium resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching, and caused airway dilation similar to those seen in human congenital cystic lung diseases. The cystic lung phenotype in Yy1 mutants can be explained by the reduced expression of Shh in lung endoderm, a transcriptional target of YY1, and the subsequent derepression of mesenchymal Fgf10 expression. Accordingly, SHH supplementation partially rescued the lung phenotype in vitro. Analysis of human lung tissues revealed decreased YY1 expression in children with pleuropulmonary blastoma (PPB), a rare pediatric lung tumor arising during fetal development and associated with DICER1 mutations. No evidence for a potential genetic interplay between murine Dicer and Yy1 genes during lung morphogenesis was observed. However, the cystic lung phenotype resulting from the epithelial inactivation of Dicer function mimics the Yy1 lung malformations with similar changes in Shh and Fgf10 expression. Together, our data demonstrate the critical requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB.
Epithelial inactivation of Yy1 abrogates lung branching morphogenesis.
Specimen part
View SamplesIn order to determine BCL6 target genes an EBV negative Burkitt's lymphoma cell line, DG75, was stably transfected with a tetracycline transactivator and tight doxycycline responsive expression of GFP was established. The endogenous BCL6 genes of this cell line were disrupted by homologous recombination and a BCL6 cDNA downstream of tetracycline responsive elements (TRE) was inserted to produce Bcl6-/-:tetBCL6-HA cells. Westerns demonstrated doxycycline dependent BCL6 expression.Bcl6-/-:tet. BCL6-HA cells (clone AB7) were either grown without doxycycline (control) or with 1 ug/ml doxycycline for 16, 48 or 96 hours. Total RNA was extracted using RNeasy minipreps (Qiagen) and concentration and quality were checked on the NanoDrop ND- 1000 spectrophotometer (NanoDrop Technologies, USA) and the RNA Nano 6000 kit (Agilent Technologies) on a 2100 Bioanalyzer (Agilent Technologies). One hundred ng of total RNA was processed with the GeneChip Eukaryotic Whole Transcript Sense Target Labelling Assay kit (Affymetrix) according to the manufacturer's details. Hybridisation and scanning of GeneChips was carried out at the CSC/IC Microarray Centre, MRC Clinical Sciences Centre Imperial College London and data analysis by Bioinformatics Support Service, Imperial College London. Briefly, pre- processing of data was performed using GeneSpring GX 10.0.2 software (Agilent Technologies) which applied the "Exon RMA16" algorhithm to the data set. Exon RMA16 performs background correction, quantile normalisation, median polish summarisation and variance stabilisation of 16. In background correction, intensity values of each individual array are corrected for non-specific binding by subtracting the average signal intensity of the area between spots from each probe set. Normalisation is required so multiple chips can be compared to each other. Quantile normalisation adjusts the distribution of probe intensity of each array analysed and so that the distribution of probe intensities for each array in a set of arrays is the same. Probe summarisation refers to the conversion of probe level values (there are approximately 26 probes per gene on each GeneChip) to a single probe set expression value. Variance stabilisation of 16 refers to the addition of the value 16 to the expression values. By increasing the expression value, the variance of the data set is reduced and the distribution (defined by its mean and its variance) is stabilised.
Synthetic Lethal Screen Demonstrates That a JAK2 Inhibitor Suppresses a BCL6-dependent IL10RA/JAK2/STAT3 Pathway in High Grade B-cell Lymphoma.
Cell line
View SamplesThe goal of our study is to determine whether Atg16L1 deficiency leads to differences in the transcriptional profile of CD11c+ Dendritic Cells, ultimately leading to an increased inflammatory phenotype.
Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells.
Specimen part
View SamplesThe goal of our study is to determine whether Atg16L1 deficiency leads to differences in the transcriptional profile of CD11c+ Dendritic Cells, ultimately leading to an increased inflammatory phenotype.
Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells.
Age, Specimen part
View Samples