Centrosome defects are a common feature of many cancers. Surprisingly, flies can proceed through the majority of development without centrosomes or with amplified centrosomes in most of their cells. It is unclear whether this is because centrosome defects do not cause many problems in Drosophila cells, or because they can adapt to cope with any problems that arise. Indeed, centrosome loss and centrosome amplification predispose fly brain cells to form tumours. Here we assess how centrosome loss or centrosome amplification perturbs cell physiology by profiling the global transcriptome of Drosophila larval brains and imaginal discs that either lack centrosomes or have too many centrosomes.
Centrosome loss or amplification does not dramatically perturb global gene expression in Drosophila.
Specimen part
View SamplesChanges in Treg function are difficult to quantify due to the lack of Treg-exclusive markers in humans and the complexity of functional experiments. We sorted naive and memory human Tregs and conventional T cells, and identified genes that identify human Tregs regardless of their state of activation. We developed this Treg signature using Affymetrix human genome U133A 2.0 microarrays.
A Regulatory T-Cell Gene Signature Is a Specific and Sensitive Biomarker to Identify Children With New-Onset Type 1 Diabetes.
Treatment, Subject
View SamplesGlucosamine proved to be a potent, broad-spectrum inhibitor of IL-1beta. Of the 2,813 genes whose transcription was altered by IL-1beta stimulation (p<0.0001), glucosamine significantly blocked the response in 2,055 (~73%). Glucosamine fully protected the chondrocytes from IL-1-induced expression of inflammatory cytokines, chemokines and growth factors as well as proteins involved in PGE2 and NO synthesis. It also blocked the IL-1-induced expression of matrix specific proteases such as MMPs -3,-9,-10,-12 and ADAMTS-1.
Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta.
Age
View SamplesBecause of the extensive data in mice supporting the concept that ST2+ Tregs might have desirable therapeutic properties, including tissue repair function, high suppressive capacity, and enhanced stability, we engineered human blood Tregs to constitutively express ST2 (IL-33R). Here we used RNA sequencing to explore the effects of short-term culture with IL-33 on human ST2-transduced Tregs. Overall design: Human naive Tregs flow-sorted from 4 independent donors were lentivirally transduced with ST2, expanded for 13 days, then stimulated with IL-2 and TCR (16 h) or IL-2, TCR, and IL-33 (16 h).
Innate Control of Tissue-Reparative Human Regulatory T Cells.
Sex, Specimen part, Subject
View SamplesEwing sarcoma family of tumors (ESFT) are aggressive bone and soft tissue tumors of unknown cellular origin. Most ESFT express EWS-FLI1, a chimeric protein which functions as a growth-promoting oncogene in ESFT but is toxic to most normal cells. A major difficulty in understanding EWS-FLI1 function has been the lack of an adequate model in which to study EWS-FLI1-induced transformation. Although the cell of origin of ESFT remains elusive, both mesenchymal (MSC) and neural crest (NCSC) have been implicated. We recently developed the tools to generate NCSC from human embryonic stem cells (hNCSC). In the current study we used this model to test the hypothesis that neural crest-derived stem cells are the cells of origin of ESFT and to evaluate the consequences of EWS-FLI1 expression on human neural crest biology.
Modeling initiation of Ewing sarcoma in human neural crest cells.
Specimen part
View SamplesTranscript profiling analysis of csn3-1, csn4-1 and csn5 (csn5a-2 csn5b) light grown and dark grown mutant seedlings compared to light grown and dark grown wild type using Arabidopsis ATH1 GeneChip array
The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability.
No sample metadata fields
View SamplesPurpose: We observed protein homeostasis modulations when anc-1 is knocked-down. We wanted to measure changes in gene expression profiles following this manipulation. Methods: We treated wild type (strain N2) or polyQ35-YFP (strain AM140) nematodes, which express toxic aggregative proteins that challenge their protein homeostasis, with anc-1 RNAi until day six of adulthood, and compared their gene expression levels to those of untreated worms. Results: The knockdown of anc-1 leads to modified expression levels of hundreds of genes. There is an enrichment of transcription factors and protein homeostasis modulators, such as E3 ubiquitin ligases. Conclusions: anc-1 regulates protection from toxic aggregative proteins, at least partially, by regulating the expression of genes that encode protein homeostasis factors. Overall design: Wild type strain, three repeats; polyQ35-YFP strain, four repeats. Each repeat has two conditions: untreated (EV), and RNAi toward anc-1.
Gene expression modulation by the linker of nucleoskeleton and cytoskeleton complex contributes to proteostasis.
Cell line, Subject
View SamplesThe objective of this study is to identify the genes that are up-regulated amid proteasome dysfunction to facilitate the discovery of proteolytic pathways that are activated as a compensatory response to proteasome inhibition. Proteasome is a large multi-component proteolytic complex in the cell. It is responsible for the constitutive turn-over of many cellular proteins as well as the degradation of oxidized and/or unfolded proteins. With such a fundamental role in the cell, disruption of proteasome understandably can lead to disastrous outcome. Oxidative stress has been postulated as the driving mechanism for aging. Oxidatively modified proteins, which usually have lost their activity, require immediate removal by proteasome to maintain normal cellular function. Dysfunction of proteasome has also been linked to neuro-degenerative diseases such as Alzheimers and Parkinsons diseases, those that are most commonly seen in aged population. There is more than one proteolytic pathway in the cell, and it has been reported that obstruction of any one of these pathways may enhance the activity of the others. Proteasomal function has been found to have decreased during aging, prompting researchers to hypothesize that failure to remove oxidized proteins may play an important role in aging. It would be interesting to determine the other proteolytic pathways that are activated after proteasome inhibition by a relatively specific inhibitor epoxomicin to help understand their roles in aging processes.
Iron regulatory protein 2 turnover through a nonproteasomal pathway.
No sample metadata fields
View SamplesRescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Using the NCI anticancer drug screen data, we identified two compounds from the thiosemicarbazone family that manifest increased growth inhibitory activity in mutant p53 cells, particularly for the p53R175 mutant. Mechanistic studies reveal that NSC319726 restores WT structure and function to the p53R175 mutant. This compound kills p53R172H knock-in mice with extensive apoptosis and inhibits xenograft tumor growth in a 175-allele specific mutant p53 dependent manner. This activity depends upon the zinc ion chelating properties of the compound as well as redox changes. These data identify NSC319726 as a p53R175 mutant reactivator and as a lead compound for p53 targeted drug development.
Allele-specific p53 mutant reactivation.
Specimen part, Cell line, Treatment
View SamplesThe mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process. Overall design: Total of 16 mice brains with raw data for 50,212 single cells and processed data for 37,089 single cells
Single-cell transcriptomic profiling of the aging mouse brain.
Specimen part, Subject
View Samples