Demonstration of reduced biological effects with a prototypic modified risk tobacco product.
A 28-day rat inhalation study with an integrated molecular toxicology endpoint demonstrates reduced exposure effects for a prototypic modified risk tobacco product compared with conventional cigarettes.
Sex, Specimen part, Treatment
View SamplesThe goal of this study is to compare the transcriptome of the 2 MVT1 subpopulations in order to identify new genes and pathways that stands beyond the CD24+ aggressive phenotype Overall design: mRNA profiles of CD24- and CD24+ cells were generated by deep sequencing, in triplicate, using Illumina HiSeq 2500
Deep sequencing of mRNA in CD24(-) and CD24(+) mammary carcinoma Mvt1 cell line.
No sample metadata fields
View SamplesGenome instability is a potential limitation to the research and therapeutic application of induced pluripotent stem cells (iPSCs). Observed genomic variations reflect the combined activities of DNA damage, cellular DNA damage response (DDR), and selection pressure in culture. To understand the contribution of DDR on the distribution of copy number variations (CNVs) in iPSCs, we mapped CNVs of iPSCs with mutations in the central DDR gene ATM onto genome organization landscapes defined by genome-wide replication timing profiles. We show that following reprogramming the early and late replicating genome is differentially affected by CNVs in ATM deficient iPSCs relative to wild type iPSCs. Specifically, the early replicating regions had increased CNV losses during retroviral reprogramming. This differential CNV distribution was not present after later passage or after episomal reprogramming. Comparison of different reprogramming methods in the setting of defective DNA damage response reveals unique vulnerability of early replicating open chromatin to retroviral vectors.
Influence of ATM-Mediated DNA Damage Response on Genomic Variation in Human Induced Pluripotent Stem Cells.
Specimen part
View SamplesCancer is a disease of both genetic and epigenetic changes. While increasing evidence demonstrates that oncogenic progression entails chromatin-mediated changes such as DNA methylation, the role of histone variants in cancer initiation and progression currently remains unexplored. Here, we report that the histone variant macroH2A (mH2A) suppresses tumour progression of malignant melanoma.
The histone variant macroH2A suppresses melanoma progression through regulation of CDK8.
Specimen part, Disease
View SamplesWe report the correlation between lung-derived neonatal MSCs and 2 clinical variables among preterm newborns: corrected gestational age (CGA) at collection and the severity of bronchopulmonary dysplasia (BPD) Overall design: To test the correlation between the transcriptional profiles of tracheal aspirate-derived mesenchymal stromal cells with late stage lung development and with bronchopulmonary dysplasia.
Lung-Resident Mesenchymal Stromal Cells Reveal Transcriptional Dynamics of Lung Development in Preterm Infants.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The distribution of genomic variations in human iPSCs is related to replication-timing reorganization during reprogramming.
Sex, Age, Specimen part, Disease, Disease stage, Subject, Time
View SamplesCell fate change involves significant genome reorganization, including change in replication timing, but how these changes are related to genetic variation has not been examined. To study how change in replication timing that occurs during reprogramming impacts the copy number variation (CNV) landscape, we generated genome-wide replication timing profiles of induced pluripotent stem cells (iPSCs) and their parental fibroblasts. A significant portion of the genome changes replication timing as a result of reprogramming, indicative of overall genome reorganization. We found that early and late replicating domains in iPSCs are differentially affected by copy number gains and losses, and that in particular CNV gains accumulate in regions of the genome that change to earlier replication during the reprogramming process. This differential relationship was present irrespective of reprogramming method. Overall, our findings reveal a functional association between reorganization of replication timing and the CNV landscape that emerges during reprogramming.
The distribution of genomic variations in human iPSCs is related to replication-timing reorganization during reprogramming.
Specimen part, Disease, Disease stage, Subject
View SamplesMKR mice is a Type 2 Diabetic mice, which was created by expressing mutation in IGF1 receptor in the skeletal muscle, and is widely used in diabetes research. Gene expression differences between MKR mice and Healthy (Wild type) mice are poorly understood.
Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice.
Age, Specimen part
View SamplesCell fate perturbations underlie many human diseases, including breast cancer. However, the regulation of breast cell fate remains largely elusive. The mammary gland epithelium consists of differentiated luminal epithelial and basal myoepithelial cells, as well as undifferentiated stem cells and more restricted progenitors. Breast cancer originates from this epithelium but the molecular mechanisms underlying breast epithelial hierarchy remain ill-defined. Mouse and human luminal cells express keratins (K)18, 8, 19 and/or estrogen receptor (ER) and progesterone receptor (PR), their basal counterparts express K5, 14 and/or p63 and/or -smooth-muscle actin (-SMA)4-6. In this study, using a high-content confocal image-based shRNA screen for tumor suppressors regulating human breast cell fate, we discovered that ablation of the Hippo kinases large tumor suppressor (LATS) 1 and 2, promoted luminal fate and increased the number of bipotent and luminal progenitors, the proposed cell-of-origin of most human breast cancers. Mechanistically, we discovered a crosstalk between Hippo and ER signaling. In the presence of LATS, ER was targeted for ubiquitination and proteasomal degradation. Loss of LATS stabilized ER and Hippo effectors YAP/TAZ, which in concert control breast cell fate via intrinsic and paracrine mechanisms. Our findings uncover a novel non-canonical (i.e., YAP/TAZ-independent) effect of LATS in the regulation of human breast cell fate.
The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα.
Specimen part, Cell line
View SamplesPerturbation of the tightly regulated dynamic process of cell fate underlies many human diseases. The molecular mechanisms regulating breast cell fate in the hierarchically organized luminal and basal lineages of breast epithelium remain largely elusive. We performed a high-content confocal image-based shRNA screen for regulators of primary human breast cell fate. Inhibition of the Hippo kinases LATS was found to promote luminal fate and increase the number of progenitors, which is a paradox given that Hippo effectors YAP/TAZ have been associated with basal fate. Mechanistically, LATS loss increases the activities of YAP/TAZ and ER, which in concert control breast cell fate via intrinsic and paracrine effects. Reduced LATS expression is found in breast cancers with a poor prognosis; this diminishes the sensitivity of ER-positive- and increases the sensitivity of ER-negative cancers to endocrine therapy. Thus, in this study we have unraveled crosstalk between Hippo and estrogen signaling and shown that LATS loss triggers expansion of luminal progenitors, the highly suspected cell-of-origin in most breast cancers.
The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα.
Specimen part, Subject
View Samples