RORt+ innate lymphoid cells (ILC) are crucial players of innate immune responses and represent a major source of IL-22, which has an important role in mucosal homeostasis. The signals required by RORt+ ILC to express IL-22 and other cytokines, including TNF, have only partially been elucidated. Here we show that RORt+ ILC can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORt+ ILC selectively activates a coordinated pro-inflammatory program, including TNF, while cytokine stimulation induces preferentially IL-22 expression. However, combined engagement of NKp44 and cytokine receptors results in a strong synergistic effect. These data support the concept that NKp44+ RORt+ ILC can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus.
RORγt⁺ innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44.
Specimen part, Treatment
View SamplesWe analyzed the genome-wide expression by RNA-seq of a yeast strain that expresses Cas9d and a guideRNA targeted to the GAL10 locus (called +116), which inhibits GAL10 ncRNA expression from the antisense strand. We compared this strain to a strain expressing a scrambled guideRNA. The goal was to examine the effects of ncRNA inhibition and to examine if CRISPR inhibition of gene expression has off-target effects. We find that CRISPR-mediated inhibtion of GAL10 ncRNA only significantly changes expression of transcripts at the GAL1-10 locus, showing that CRISPR is highly specific, and that GAL10 ncRNA only control genes at the GAL locus. Overall design: RNA-seq of 2 strains with CRISPR scrambled and 2 strains with CRISPR +116, the latter of which inhibits GAL10 ncRNA
Single-Molecule Imaging Reveals a Switch between Spurious and Functional ncRNA Transcription.
Cell line, Subject
View SamplesThe p21 RAS subfamily of small GTPases, including KRAS, HRAS, and NRAS, regulates cell proliferation, cytoskeletal organization and other signaling networks, and is the most frequent target of activating mutations in cancer. Activating germline mutations of KRAS and HRAS cause severe developmental abnormalities leading to Noonan, cardio-facial-cutaneous and Costello syndrome, but activating germline mutations of NRAS have not been reported. Autoimmune lymphoproliferative syndrome (ALPS) is the most common genetic disease of lymphocyte apoptosis and causes autoimmunity as well as excessive lymphocyte accumulation, particularly of CD4-, CD8- ab T cells. Mutations in ALPS typically affect CD95 (Fas/APO-1)-mediated apoptosis, one of the extrinsic death pathways involving tumor necrosis factor receptor (TNFR) superfamily proteins, but certain ALPS individuals have no such mutations. We show here that the salient features of ALPS as well as a predisposition to hematological malignancies can be caused by a heterozygous germline Gly13Asp activating mutation of the NRAS oncogene that does not impair CD95-mediated apoptosis. The increase in active, GTP-bound NRAS augments RAF/MEK/ERK signaling which markedly decreases the pro-apoptotic protein BIM and attenuates intrinsic, nonreceptor-mediated mitochondrial apoptosis. Thus, germline activating mutations in NRAS differ from other p21 Ras oncoproteins by causing selective immune abnormalities without general developmental defects. Our observations on the effects of NRAS activation indicate that RAS-inactivating drugs, such as farnesyl-transferase inhibitors (FTIs) should be examined in human autoimmune and lymphocyte homeostasis disorders.
NRAS mutation causes a human autoimmune lymphoproliferative syndrome.
No sample metadata fields
View SamplesTreatment induced senescence (TIS) is a terminal cell cycle arrest program, increasingly recognized as a tumor suppressor mechanism complementing apoptosis in response to standard chemotherapy regimens. In particular cells with blocked apoptotic pathways rely on senescence as the only remaining failsafe mechanism to keep the neoplastic growth in check. However, little is known about biological properties, long-term fate of senescent tumor cells and their impact on the microenvironment.
Opposing roles of NF-κB in anti-cancer treatment outcome unveiled by cross-species investigations.
No sample metadata fields
View SamplesWe used Illumina-HiSeq4000 to sequence 4sU-labelled RNA samples isolated from unchallenged and DNA damaged HeLa Flp-In cells, which revealed the nature of transcriptional response folowing genotoxic stress and the contribution of P-TEFb kinase in DNA damage-induced gene transcription. Overall design: We mock treated or treated HeLa Flp-In cells for 1 or 2 hr with DMSO, 4-NQO, or 4-NQO + flavopiridol (FP) as indicated below. During the last 30 minutes of the treatments, we labeled the RNA or not with the nucleoside analogue 4-thiouridine (500µM 4sU) for 30 minutes.
P-TEFb Activation by RBM7 Shapes a Pro-survival Transcriptional Response to Genotoxic Stress.
Cell line, Subject
View SamplesDiffuse large B-cell lymphoma (DLBCL) represents a heterogeneous diagnostic category with distinct molecular subtypes that can be defined by gene expression profiling. However, even within these defined subtypes, heterogeneity prevails. To further elucidate the pathogenesis of these entities, we determined the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) in 248 primary DLBCL patient samples. These analyses revealed that loss of PTEN was detectable in 55% of germinal center B-cell-like (GCB) DLBCLs, whereas this abnormality was found in only 14% of non-GCB DLBCL patient samples. In GCB DLBCL, the PTEN status was inversely correlated with activation of the oncogenic PI3K/ protein kinase B (AKT) pathway in both DLBCL cell lines and primary patient samples. Re-expression of PTEN induced cytotoxicity in PTEN-deficient GCB DLBCL cell line models by inhibiting PI3K/AKT signaling, indicating an addiction to this pathway in this subset of GCB DLBCLs. PI3K/AKT inhibition induced down-regulation of the transcription factor MYC. Re-expression of MYC rescued GCB DLBCL cells from PTEN-induced toxicity, identifying a regulatory mechanism of MYC expression in DLBCL. Finally, pharmacologic PI3K inhibition resulted in toxicity selectively in PTEN-deficient GCB DLBCL lines. Collectively, our results indicate that PTEN loss defines a PI3K/ AKT-dependent GCB DLBCL subtype that is addicted to PI3K and MYC signaling and suggest that pharmacologic inhibition of PI3K might represent a promising therapeutic approach in these lymphomas.
PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma.
Sex, Disease, Cell line, Treatment
View SamplesIn many mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as lethal weight loss as a result of severe and persistent hypophagia. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo--dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR) a transcription factor. Because TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, we hypothesized that wasting syndrome is due to TCDD-induced dysregulation of genes involved in regulation of food-intake. We therefore focused on the hypothalamus, as it is the regulatory center of food-intake and energy balance in the central nervous system. We profiled mRNA abundance in hypothalamic tissue from two rat strains with widely differing sensitivities to wasting syndrome: TCDD-sensitive Long-Evans rats and TCDD-resistant Han/Wistar rats, 23 hours after exposure to TCDD (100 g/kg) or corn oil vehicle. We found that TCDD exposure caused minimal transcriptional dysregulation effects in the hypothalamus, with only 6 genes changed in Long-Evans rats and 15 genes in Han/Wistar rats. Two of the most dysregulated genes were Cyp1a1 and Nqo1, which are induced by TCDD across a wide range of tissues and are considered sensitive markers of TCDD exposure. The minimal response of the hypothalamic transcriptome to a lethal dose of TCDD at an early time-point suggests that the hypothalamus is not the predominant site of initial events leading to hypophagia and associated wasting. TCDD may affect feeding behaviour via events upstream or downstream of the hypothalamus, and further work is required to evaluate this at the level of individual hypothalamic nuclei and subregions.
Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin.
Sex
View SamplesThe gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans.
Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial.
Sex, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesRodents exposed to the environmental contaminant, TCDD, suffer from a number of acute and chronic toxicities, including lethality and a wasting syndrome. Hypothesizing that the wasting syndrome may be caused by changes in adipose tissue -- either in its hormonal regulation or in homeostatic effects -- we profiled the transcriptional response of rat white adipose to TCDD. We employed two separate rat strains: the Long-Evans strain is sensitive to TCDD toxicities while the Han/Wistar strain is over four orders of magnitude more resistant. One day after TCDD exposure few genes were altered in either strain, but after four days a modest number of transcriptional alterations were observed. Strikingly, TCDD had far fewer effects than did a feed-restriction protocol intended to mimic the wasting syndrome itself. Notably several classic TCDD-responsive genes were modulated at all time-points, including Cyp1a1, Cyp1b1, and Nqo1. We therefore concluded that rat adipose tissue is unlikely to be the primary driver of the wasting syndrome, and that another tissue is likely involved.
Transcriptional profiling of rat white adipose tissue response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin.
Sex
View SamplesPluripotency, the capacity of embryo-derived stem cells to generate all tissues in the organism, can be induced in somatic cells by nuclear transfer into oocyte, fusion with embryonic stem cells, and for male germ cells by cell culture alone. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4, and Myc) to yield induced Pluripotent Stem (iPS) cells. Using the same four factors, we have derived iPS cells from human embryonic stem cell-derived fibroblasts, primary human fetal cells, and diverse cells of neonatal and adult human origin. The human iPS cells manifest the colony morphology, gene expression patterns, and epigenetic characteristics of human Embryonic Stem (hES) cells, and form well-differentiated teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogram human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.
Reprogramming of human somatic cells to pluripotency with defined factors.
No sample metadata fields
View Samples