Yeast cell cycle transcript dynamics in three S. cerevisiae strains grown at 30 degrees Celsius: cdc20 GALL-CDC20 (persistent mitotic CDK activity; CDK on), cdc8-ts (DNA replication checkpoint), GAL-cse4-353 (spindle assembly checkpoint), cdc8-ts cdc20 (DNA replication checkpoint, CDK on), and cdc8-ts cdc20, rad53-1 (DNA replication checkpoint without Rad53 activity, CDK on) in a BF264-15DU background. We compared transcript levels of genes previously shown to be periodically expressed in wild-type cells and in cells lacking all mitotic cyclins (clb1,2,3,4,5,6; CDK off).
Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.
No sample metadata fields
View SamplesFollowing androgen ablation treatment for advanced prostate cancer, almost all men relapse after a period of initial response to therapy, which eventually is life threatening. We have previously found that purine-rich element binding protein, PUR alpha, was significantly repressed in androgen-independent prostate cancer cell lines in comparison to an androgen-dependent line. Moreover, over-expressing PURa in androgen-independent prostate cancer cells attenuated their cell proliferation. The aim of the studies described here was to uncover some of the mechanisms by which over-expression of PURa attenuates cell proliferation.
Purine-rich element binding protein (PUR) alpha induces endoplasmic reticulum stress response, and cell differentiation pathways in prostate cancer cells.
No sample metadata fields
View SamplesThe functioning of a specific tissue depends on the expression pattern of the different genes. We used microarrays to compare gene expression across different murine tissues, to get a better understanding in the expression pattern and functioning of the different tissues. With this analysis, we were not only able to identify genes that were specifically expressed in a spicific tissue but, as important, we also identified genes that were specifically repressed in a tissue, compared to al the other analysed tissues.
Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.
Sex, Specimen part
View SamplesWe used Affymetrix Gene Arrays (1.0 ST) to compare gene expression across different murine tissues.
Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.
Specimen part
View SamplesSpiroplasma (Mollicutes) is one of the heritable bacterial endosymbionts of Drosophila species. Several strains like S. poulsonii manipulate host reproduction in a selfish manner. When females of D. melanogaster are infected with natural S. poulsonii strain MSRO (melanogaster sex ratio organism), only male offspring are killed during embryogenesis, and this phenomenon is called male-killing. To understand the molecular mechanism of male-killing, we compared gene expression profiles between MSRO-infected and uninfected embryos of D. melanogaster by using RNA-sequencing (RNA-seq). For embryonic sexing, we employed a transgenic reporter strain Sex-lethal (Sxl)-Pe-EGFP, which expresses GFP only in females. We collected female and male embryos at stage 10-11, when abnormal apoptosis associated with male-killing starts to occur in male progenies. For each sample, we analyzed three biological replicates.
Male-killing symbiont damages host's dosage-compensated sex chromosome to induce embryonic apoptosis.
No sample metadata fields
View SamplesBackground: Breastfed human infants are predominantly colonized by bifidobacteria that thrive on human milk oligosaccharides (HMO). The two most predominant species of bifidobacteria in infant feces are Bifidobacterium breve (B. breve) and Bifidobacterium longum subsp. infantis (B. infantis), both avid HMO-consumer strains. Our laboratory has previously shown that B. infantis, when grown on HMO, increase adhesion to intestinal cells and increase the expression of the anti-inflammatory cytokine interleukin-10. The purpose of the current study was to investigate the effects of carbon source—glucose, lactose, or HMO—on the ability of B. breve and B. infantis to adhere to and affect the transcription of intestinal epithelial cells on a genome-wide basis. Results: HMO-grown B. infantis had higher percent binding to Caco-2 cell monolayers compared to B. infantis grown on glucose or lactose. B. breve had low adhesive ability regardless of carbon source. Despite differential binding ability, both HMO-grown strains significantly differentially affected the Caco-2 transcriptome compared to their glucose or lactose grown controls. HMO-grown B. breve and B. infantis both down-regulated genes in Caco-2 cells associated with chemokine activity. Conclusion: The choice of carbon source affects the interaction of bifidobacteria with intestinal epithelial cells. HMO-grown bifidobacteria reduce markers of inflammation, compared to glucose or lactose-grown bifidobacteria. In the future, the design of preventative or therapeutic probiotic supplements may need to include appropriately chosen prebiotics. Overall design: CACO-2 cells incubated with Bifidobacterium longum subsp. infantis grown on (1) glucose, (2) lactose, or (3) human milk oligosaccharides. All experiments were run in triplicate.
Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells.
No sample metadata fields
View SamplesBackground: Breastfed human infants are predominantly colonized by bifidobacteria that thrive on human milk oligosaccharides (HMO). The two most predominant species of bifidobacteria in infant feces are Bifidobacterium breve (B. breve) and Bifidobacterium longum subsp. infantis (B. infantis), both avid HMO-consumer strains. Our laboratory has previously shown that B. infantis, when grown on HMO, increase adhesion to intestinal cells and increase the expression of the anti-inflammatory cytokine interleukin-10. The purpose of the current study was to investigate the effects of carbon source—glucose, lactose, or HMO—on the ability of B. breve and B. infantis to adhere to and affect the transcription of intestinal epithelial cells on a genome-wide basis. Results: HMO-grown B. infantis had higher percent binding to Caco-2 cell monolayers compared to B. infantis grown on glucose or lactose. B. breve had low adhesive ability regardless of carbon source. Despite differential binding ability, both HMO-grown strains significantly differentially affected the Caco-2 transcriptome compared to their glucose or lactose grown controls. HMO-grown B. breve and B. infantis both down-regulated genes in Caco-2 cells associated with chemokine activity. Conclusion: The choice of carbon source affects the interaction of bifidobacteria with intestinal epithelial cells. HMO-grown bifidobacteria reduce markers of inflammation, compared to glucose or lactose-grown bifidobacteria. In the future, the design of preventative or therapeutic probiotic supplements may need to include appropriately chosen prebiotics. Overall design: CACO-2 cells incubated with Bifidobacterium breve grown on (1) glucose, (2) lactose, or (3) human milk oligosaccharides. All experiments were run in triplicate.
Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells.
No sample metadata fields
View SamplesOrganisms need to assess their nutritional state and adapt their digestive capacity to the demands for various nutrients. Modulation of digestive enzyme production represents a rational step to regulate nutriment uptake. However, the role of digestion in nutrient homeostasis has been largely neglected. In this study, we analyzed the mechanism underlying glucose repression of digestive enzymes in the adult Drosophila midgut. We demonstrate that glucose represses the expression of many carbohydrases and lipases. Our data reveal that the consumption of nutritious sugars stimulates the secretion of the transforming growth factor ß (TGF-ß) ligand, Dawdle, from the fat body. Dawdle then acts via circulation to activate TGF-ß/Activin signaling in the midgut, culminating in the repression of digestive enzymes that are highly expressed during starvation. Thus, our study not only identifies a mechanism that couples sugar sensing with digestive enzyme expression but points to an important role of TGF-ß/Activin signaling in sugar metabolism. Overall design: RNA-sequencing of whole guts from Drosophila melannogaster OregonR adult females was performed under three feeding conditions: Standard medium, glucose, and agar. Three biological repeats were performed for each condition.
Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Growth factor independence 1b (gfi1b) is important for the maturation of erythroid cells and the regulation of embryonic globin expression.
Specimen part
View SamplesGrowth factor independence 1b (Gfi1b) is a DNA binding repressor of transcription with vital functions in hematopoiesis. Gfi1b-null embryos die at midgestation very likely due to defects in erythro- and megakaryopoiesis. To analyze the full functionality of Gfi1b in embryonic erythropoiesis, we used conditionally deficient mice that harbor floxed Gfi1b alleles and one EpoR-Cre knock-in allele.
Growth factor independence 1b (gfi1b) is important for the maturation of erythroid cells and the regulation of embryonic globin expression.
Specimen part
View Samples