Spiroplasma (Mollicutes) is one of the heritable bacterial endosymbionts of Drosophila species. Several strains like S. poulsonii manipulate host reproduction in a selfish manner. When females of D. melanogaster are infected with natural S. poulsonii strain MSRO (melanogaster sex ratio organism), only male offspring are killed during embryogenesis, and this phenomenon is called male-killing. To understand the molecular mechanism of male-killing, we compared gene expression profiles between MSRO-infected and uninfected embryos of D. melanogaster by using RNA-sequencing (RNA-seq). For embryonic sexing, we employed a transgenic reporter strain Sex-lethal (Sxl)-Pe-EGFP, which expresses GFP only in females. We collected female and male embryos at stage 10-11, when abnormal apoptosis associated with male-killing starts to occur in male progenies. For each sample, we analyzed three biological replicates.
Male-killing symbiont damages host's dosage-compensated sex chromosome to induce embryonic apoptosis.
No sample metadata fields
View SamplesOrganisms need to assess their nutritional state and adapt their digestive capacity to the demands for various nutrients. Modulation of digestive enzyme production represents a rational step to regulate nutriment uptake. However, the role of digestion in nutrient homeostasis has been largely neglected. In this study, we analyzed the mechanism underlying glucose repression of digestive enzymes in the adult Drosophila midgut. We demonstrate that glucose represses the expression of many carbohydrases and lipases. Our data reveal that the consumption of nutritious sugars stimulates the secretion of the transforming growth factor ß (TGF-ß) ligand, Dawdle, from the fat body. Dawdle then acts via circulation to activate TGF-ß/Activin signaling in the midgut, culminating in the repression of digestive enzymes that are highly expressed during starvation. Thus, our study not only identifies a mechanism that couples sugar sensing with digestive enzyme expression but points to an important role of TGF-ß/Activin signaling in sugar metabolism. Overall design: RNA-sequencing of whole guts from Drosophila melannogaster OregonR adult females was performed under three feeding conditions: Standard medium, glucose, and agar. Three biological repeats were performed for each condition.
Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression.
Specimen part, Cell line, Subject
View SamplesUsing mouse lung resident conventional CD11b+ dendritic cells (CD11b+ cDCs) in the context of house-dust mite (HDM)-driven allergic airway sensitization as a model, we aimed here to identify transcriptional events regulating the pro-Th2 activity of cDCs.
Interferon response factor-3 promotes the pro-Th2 activity of mouse lung CD11b<sup>+</sup> conventional dendritic cells in response to house dust mite allergens.
Sex, Specimen part
View SamplesTSHZ3, which encodes a zinc-finger transcription factor, was recently positioned as a hub gene in a module of genes with the highest expression in the developing human neocortex, but its functions remained unknown. Here, we identify TSHZ3 as the critical region for a syndrome associated with heterozygous deletions at 19q12q13.11, which includes autism spectrum disorder (ASD). In Tshz3 null mice, differentially expressed genes include layer-specific markers of cerebral cortical projection neurons (CPNs) and their human orthologues are strongly associated with ASD. Furthermore, heterozygous Tshz3-deficient mice show functional changes at synapses established by CPNs and exhibit core ASD-like behavioral abnormalities. These findings reveal essential roles for Tshz3 in CPN development and function, whose alterations can account for ASD in the newly-defined TSHZ3 deletion syndrome. Overall design: Three independent replicates, each containing cortices from 3-4 embryos from multiple litters, were prepared from wild-type and Tshz3 mutant neocortex at E18.5. Caubit et al., TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nat. Genet ###, xxx-yyy (2016).
TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons.
Specimen part, Subject
View SamplesProliferative and replicative senescent fibroblasts from aged human donors were reprogrammed towards pluripotency and re-differentiated in fibroblasts and then further analyzed for rejuvenation assessment.
Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human Platelet Lysate versus Fetal Calf Serum: These Supplements Do Not Select for Different Mesenchymal Stromal Cells.
Sex, Age, Specimen part, Subject
View SamplesCulture medium of mesenchymal stromal cells (MSCs) is usually supplemented with either human platelet lysate (HPL) or fetal calf serum (FCS). Many studies have demonstrated that proliferation and cellular morphology is influenced by these additives hence they may favor outgrowth of specific subpopulations, thereby affecting the heterogeneous composition of MSCs. We have isolated and expanded human bone marrow derived MSCs in parallel with HPL or FCS for two passages. In HPL the proliferation was significantly higher and cells reflected more spindle-shaped morphology. Pairwise comparisons of gene expression profiles (Affymetrix HTA 2.0) revealed only moderate differences. When we apply a fold change >1.5 and limma-adjusted P-value of <0.05, only 69 transcripts were differentially expressed. These results indicate that there is no systematic bias for specific subpopulations of MSCs by using either HPL or FCS.
Human Platelet Lysate versus Fetal Calf Serum: These Supplements Do Not Select for Different Mesenchymal Stromal Cells.
Sex, Age, Specimen part, Subject
View SamplesThe present research is devoted to the identification of gene(s) severely affected by LMNA mutations, leading to striated muscle laminopathies and more specifically the skeletal phenotype of Emery-Freifuss Muscular Dystrophy.
The non-muscle ADF/cofilin-1 controls sarcomeric actin filament integrity and force production in striated muscle laminopathies.
Age, Specimen part
View SamplesThe functioning of a specific tissue depends on the expression pattern of the different genes. We used microarrays to compare gene expression across different murine tissues, to get a better understanding in the expression pattern and functioning of the different tissues. With this analysis, we were not only able to identify genes that were specifically expressed in a spicific tissue but, as important, we also identified genes that were specifically repressed in a tissue, compared to al the other analysed tissues.
Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.
Sex, Specimen part
View SamplesWe used Affymetrix Gene Arrays (1.0 ST) to compare gene expression across different murine tissues.
Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.
Specimen part
View Samples