The functioning of a specific tissue depends on the expression pattern of the different genes. We used microarrays to compare gene expression across different murine tissues, to get a better understanding in the expression pattern and functioning of the different tissues. With this analysis, we were not only able to identify genes that were specifically expressed in a spicific tissue but, as important, we also identified genes that were specifically repressed in a tissue, compared to al the other analysed tissues.
Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.
Sex, Specimen part
View SamplesWe used Affymetrix Gene Arrays (1.0 ST) to compare gene expression across different murine tissues.
Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.
Specimen part
View SamplesAberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. Somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis
ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon.
Specimen part
View SamplesThe aim of this work was to identify genes induced by IL-9 in the colon of IL-9-tarnsgenic mice (Tg5). Therefore, we performed a comprehensive study of the genes expressed in the colon of IL-9 transgenic and wild type FVB mice, taking advantage of the affymetrix microarray technology.
IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa.
No sample metadata fields
View SamplesThe study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced post-natal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy. Overall design: WT and P2Y6 KO mice aged between 8 and 12 weeks were intraperitoneally injected with 50 mg/kg/day isoproterenol or saline solution, daily during 7 days, then hearts were harvested and weighted. Ventricles were then stored for RNA extraction.
Loss of Mouse P2Y6 Nucleotide Receptor Is Associated with Physiological Macrocardia and Amplified Pathological Cardiac Hypertrophy.
Specimen part, Treatment, Subject
View SamplesABSTRACT:Pregnancy requires a higher functional beta cell mass and this is associated with profound changes in the gene expression profile of pancreatic islets. Taking Tph1 as a sensitive marker for pregnancy-related islet mRNA expression in female mice, we previously identified prolactin receptors and placental lactogen as key signalling molecules. Since beta cells from male mice also express prolactin receptors, the question arose whether male and female islets have the same phenotypic resilience at the mRNA level during pregnancy. We addressed this question in vitro, by using islet tissue culture with placental lactogen and in vivo, by transplanting male or female islets into female acceptor mice. Additionally, the islet mRNA expression of pregnant prolactin receptor deficient mice was compared with that of their pregnant wild-type littermates. When cultured with placental lactogen, or transplanted in female recipients that became pregnant (day 12.5), male islets induced the islet pregnancy gene signature, which we defined as the 12 highest induced genes in non-transplanted female islets at day 12.5 of pregnancy. In addition, serotonin immunoreactivity was also induced in these male transplanted islets at day 12.5 of pregnancy. In order to investigate the importance of prolactin receptors in these mRNA changes we used a prolactin receptor deficient mouse model. For the 12 genes of the signature, which are highly induced in control pregnant mice, no significant induction of mRNA transcripts was found at day 9.5 of pregnancy. Together, our results support the key role of placental lactogen as a circulating factor that can trigger the pregnancy mRNA profile in male and female beta cells.
Prolactin receptors and placental lactogen drive male mouse pancreatic islets to pregnancy-related mRNA changes.
Sex, Specimen part
View SamplesABSTRACT:Pregnancy requires a higher functional beta cell mass and this is associated with profound changes in the gene expression profile of pancreatic islets. Taking Tph1 as a sensitive marker for pregnancy-related islet mRNA expression in female mice, we previously identified prolactin receptors and placental lactogen as key signalling molecules. Since beta cells from male mice also express prolactin receptors, the question arose whether male and female islets have the same phenotypic resilience at the mRNA level during pregnancy. We addressed this question in vitro, by using islet tissue culture with placental lactogen and in vivo, by transplanting male or female islets into female acceptor mice. Additionally, the islet mRNA expression of pregnant prolactin receptor deficient mice was compared with that of their pregnant wild-type littermates. When cultured with placental lactogen, or transplanted in female recipients that became pregnant (day 12.5), male islets induced the islet pregnancy gene signature, which we defined as the 12 highest induced genes in non-transplanted female islets at day 12.5 of pregnancy. In addition, serotonin immunoreactivity was also induced in these male transplanted islets at day 12.5 of pregnancy. In order to investigate the importance of prolactin receptors in these mRNA changes we used a prolactin receptor deficient mouse model. For the 12 genes of the signature, which are highly induced in control pregnant mice, no significant induction of mRNA transcripts was found at day 9.5 of pregnancy. Together, our results support the key role of placental lactogen as a circulating factor that can trigger the pregnancy mRNA profile in male and female beta cells.
Prolactin receptors and placental lactogen drive male mouse pancreatic islets to pregnancy-related mRNA changes.
Specimen part
View SamplesGene expression analysis of a unique HNSCC (Head and Neck Squamous Cell Carcinoma) localization, the hypopharynx. Four normal and 34 tumor samples were analysed using Affymetrix HG-U95A microarrays containing probe sets representing ~12650 distinct transcription features.
Identification of genes associated with tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis.
No sample metadata fields
View SamplesWe used microarrays to identify mucosal gene signatures predictive of response to infliximab (IFX) in patients with inflammatory bowel disease (IBD) and to gain more insight into the pathogenesis of IBD.
Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis.
Specimen part, Disease
View Samples