Disrupted skin barrier due to altered keratinocyte differentiation is common in pathologic conditions such as atopic dermatitis, ichthyosis and psoriasis. However, the molecular cascades governing keratinocyte terminal differentiation are still poorly understood. We have previously demonstrated that a dominant mutation in ZNF750 leads to a clinical phenotype that reminiscent of psoriasis and seborrheic dermatitis. We defined ZNF750 as a nuclear effector that is strongly activated in and essential for keratinocyte terminal differentiation. ZNF750 knockdown in HaCaT keratinocytes markedly reduced the expression of epidermal late differentiation markers, including gene subsets of epidermal differentiation complex and skin barrier formation such as FLG, LOR, SPINK5, ALOX12B and DSG1, known to be mutated in various human skin diseases. Furthermore, ZNF750 over-expression in undifferentiated cells induced terminal differentiation genes. Thus, ZNF750 is a regulator of keratinocyte terminal differentiation, and with its downstream targets can serve in future elucidation of therapeutics for common disease of skin barrier
ZNF750 is expressed in differentiated keratinocytes and regulates epidermal late differentiation genes.
Specimen part
View SamplesMicrovascular endothelial cells (EC) display a high degree of phenotypic and functional heterogeneity among different organs. Organ-specific EC control their tissue microenvironment by angiocrine factors in health and disease. Liver sinusoidal EC (LSEC) are uniquely differentiated to fulfil important organ-specific functions in development, under homeostatic conditions, and in regeneration and liver pathology. Recently, Bmp2 has been identified by us as an organ-specific angiokine derived from LSEC. To study angiocrine Bmp2 signaling in the liver, we conditionally deleted Bmp2 in LSEC using EC subtype-specific Stab2-Cre mice. Genetic inactivation of hepatic angiocrine Bmp2 signaling in Stab2-Cre;Bmp2fl/fl (Bmp2LSECKO) mice caused massive iron overload in the liver, and increased serum iron levels and iron deposition in several organs similar to classic hereditary hemochromatosis. Iron overload was mediated by decreased hepatic expression of hepcidin, a key regulator of iron homeostasis. Thus, angiocrine Bmp2 signaling within the hepatic vascular niche represents a constitutive pathway indispensable for iron homeostasis in vivo that is non-redundant with Bmp6. Notably, we demonstrate that organ-specific angiocrine signaling is essential not only for the homeostasis of the respective organ, but also for the homeostasis of the whole organism.
Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis.
Specimen part, Cell line
View SamplesMicrovascular endothelial cells (EC) are increasingly recognized as organ-specific gatekeepers of their microenvironment. Microvascular EC instruct neighboring cells in their organ-specific vascular niches by angiocrine factors that comprise secreted growth factors/angiokines, but also extracellular matrix molecules and transmembrane proteins. The molecular regulators, however, that drive organ-specific microvascular transcriptional programs and thereby regulate angiodiversity, are largely elusive. Opposite to continuous barrier-forming EC, liver sinusoids are a prime model of discontinuous, permeable micro-vessels. Here, we show that transcription factor GATA4 controls liver sinusoidal endothelial (LSEC) specification and function. LSEC-restricted deletion of GATA4 caused transformation of discontinuous liver sinusoids into continuous capillaries. Capillarization was characterized by ectopic basement membrane deposition and formation of an abundantly VE-Cadherin expressing continuous endothelium. Correspondingly, ectopic expression of GATA4 in cultured continuous EC mediated downregulation of continuous EC transcripts and upregulation of LSEC genes. Regarding angiocrine functions, the switch from discontinuous LSEC to continuous EC during embryogenesis caused liver hypoplasia, fibrosis, and impaired colonization by hematopoietic progenitor cells resulting in anemia and embryonic lethality. Thus, GATA4 acts as master regulator of hepatic microvascular specification and acquisition of organ-specific vascular competence indispensable for liver development. The data also establish an essential role of the hepatic microvasculature for embryonic hematopoiesis.
GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis.
Cell line
View SamplesMicrovascular endothelial cells (EC) are increasingly recognized as organ-specific gatekeepers of their microenvironment. Microvascular EC instruct neighboring cells in their organ-specific vascular niches by angiocrine factors that comprise secreted growth factors/angiokines, but also extracellular matrix molecules and transmembrane proteins. The molecular regulators, however, that drive organ-specific microvascular transcriptional programs and thereby regulate angiodiversity, are largely elusive. Opposite to continuous barrier-forming EC, liver sinusoids are a prime model of discontinuous, permeable micro-vessels. Here, we show that transcription factor GATA4 controls liver sinusoidal endothelial (LSEC) specification and function. LSEC-restricted deletion of GATA4 caused transformation of discontinuous liver sinusoids into continuous capillaries. Capillarization was characterized by ectopic basement membrane deposition and formation of an abundantly VE-Cadherin expressing continuous endothelium. Correspondingly, ectopic expression of GATA4 in cultured continuous EC mediated downregulation of continuous EC transcripts and upregulation of LSEC genes. Regarding angiocrine functions, the switch from discontinuous LSEC to continuous EC during embryogenesis caused liver hypoplasia, fibrosis, and impaired colonization by hematopoietic progenitor cells resulting in anemia and embryonic lethality. Thus, GATA4 acts as master regulator of hepatic microvascular specification and acquisition of organ-specific vascular competence indispensable for liver development. The data also establish an essential role of the hepatic microvasculature for embryonic hematopoiesis.
GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis.
Specimen part
View SamplesMicrovascular endothelial cells (EC) are increasingly recognized as organ-specific gatekeepers of their microenvironment. Microvascular EC instruct neighboring cells in their organ-specific vascular niches by angiocrine factors that comprise secreted growth factors/angiokines, but also extracellular matrix molecules and transmembrane proteins. The molecular regulators, however, that drive organ-specific microvascular transcriptional programs and thereby regulate angiodiversity, are largely elusive. Opposite to continuous barrier-forming EC, liver sinusoids are a prime model of discontinuous, permeable micro-vessels. Here, we show that transcription factor GATA4 controls liver sinusoidal endothelial (LSEC) specification and function. LSEC-restricted deletion of GATA4 caused transformation of discontinuous liver sinusoids into continuous capillaries. Capillarization was characterized by ectopic basement membrane deposition and formation of an abundantly VE-Cadherin expressing continuous endothelium. Correspondingly, ectopic expression of GATA4 in cultured continuous EC mediated downregulation of continuous EC transcripts and upregulation of LSEC genes. Regarding angiocrine functions, the switch from discontinuous LSEC to continuous EC during embryogenesis caused liver hypoplasia, fibrosis, and impaired colonization by hematopoietic progenitor cells resulting in anemia and embryonic lethality. Thus, GATA4 acts as master regulator of hepatic microvascular specification and acquisition of organ-specific vascular competence indispensable for liver development. The data also establish an essential role of the hepatic microvasculature for embryonic hematopoiesis.
GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis.
Specimen part
View SamplesWe developed a technique for generating hypothalamic neurons from human pluripotent stem cells. Here, as proof-of-principle, we examine the use of these cells in modeling of a monogenic form of severe obesity: PCSK1 deficiency. We generated PCSK1 (PC1/3)-deficient human embryonic stem cell (hESC) lines using both shRNA and CRISPR-Cas9, and investigated pro-opiomelanocortin (POMC) processing using hESC-differentiated hypothalamic neurons. Overall design: We tried to idenitify transcripitional profiles and specific transcription factors that involved in of different stages during hypothalamic neuron differentiation from single cell sequencing for hESC-derived Day27 hypothalamic neurons, Day 12 neuron progenitors and undifferentiated stem cells
PC1/3 Deficiency Impacts Pro-opiomelanocortin Processing in Human Embryonic Stem Cell-Derived Hypothalamic Neurons.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular characterization of the peripheral airway field of cancerization in lung adenocarcinoma.
Sex, Age, Specimen part, Subject
View SamplesField of cancerization in the airway epithelium has been increasing examined to understand early pathogenesis of non-small cell lung cancer.
Molecular characterization of the peripheral airway field of cancerization in lung adenocarcinoma.
Sex, Age, Specimen part, Subject
View SamplesAlthough nuclear transfer allows the reprogramming of somatic cells to totipotency, little is known concerning the kinetics by which it takes place or the minimum requirements for its success. Here, we demonstrate that reprogramming can be achieved within a few hours and a single cell-cycle as long as two key constraints on reprogramming are satisfied. First, the recipient cell chromosomes must be removed during mitosis. Second, the nuclear envelope of the donor cell must be broken down and its chromosomes condensed, allowing an embryonic nucleus to be constructed around the incoming chromosomes. If these requirements are not met, then reprogramming fails and embryonic development arrests. These results point to a central role for processes intimately linked to cell division in mediating efficient transitions between transcriptional programs.
Reprogramming within hours following nuclear transfer into mouse but not human zygotes.
Specimen part
View Samples