By comparing HeLa cells lacking ATF7IP or SETDB1 generated through CRISPR/Cas9-mediated gene disruption to wild-type HeLa cells, the goal of the experiment was to determine the effect of loss of the SETDB1•ATF7IP complex on the transcriptome. Overall design: Total RNA-seq of three independent knockout HeLa clones lacking either ATF7IP or SETDB1
ATF7IP-Mediated Stabilization of the Histone Methyltransferase SETDB1 Is Essential for Heterochromatin Formation by the HUSH Complex.
Cell line, Subject
View SamplesImpaired DNA replication is a hallmark of cancer and a cause of genomic instability. We report that, in addition to causing genetic change, impaired DNA replication during embryonic development can have major epigenetic consequences for a genome. In a genome-wide screen, we identified impaired DNA replication as causing increased expression from a repressed transgene in Caenorhabditis elegans. The acquired expression state behaved as an “epiallele,” being inherited for multiple generations before fully resetting. Derepression was not restricted to the transgene but was caused by a global reduction in heterochromatin-associated histone modifications due to the impaired retention of modified histones on DNA during replication in the early embryo. Impaired DNA replication during development can therefore globally derepress chromatin, creating new intergenerationally inherited epigenetic expression states. Overall design: 3 replicates of div-1 mutant worms and N2 wild type worms
Impaired DNA replication derepresses chromatin and generates a transgenerationally inherited epigenetic memory.
Specimen part, Subject
View SamplesTimed sleep restriction designed to mimic human shift work was performed over a 2 week period in mice. On the final day, tissues were collected at 6 hour intervals to exmaine the effects of sleep restriction on circadian gene expression.
Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork.
Sex, Specimen part, Treatment, Time
View SamplesWe have used a combination of three high-throughput RNA capture and sequencing methods to refine and augment the transcriptome map of a well studied genetic model, Caenorhabditis elegans. The three methods include a standard (non-directional) library preparation protocol relying on cDNA priming and foldback that has been used in several previous studies for transcriptome characterization in this species, and two directional protocols, one involving direct capture of single stranded RNA fragments and one involving circular-template PCR (circligase). We find that each RNA-seq approach shows specific limitations and biases, with the application of multiple methods providing a more complete map than was obtained from any single method. Of particular note in the analysis were substantial advantages of circligase-based and ssRNA-based capture for defining sequences and structures of the precise 5'' ends (which were lost using the double strand cDNA capture method). Of the three methods, ssRNA capture was most effective in defining sequences to the polyA junction. Using datasets from a spectrum of C. elegans strains and stages and the UCSC Genome Browser, we provide a series of tools, which facilitate rapid visualization and assignment of gene structures. Overall design: single-strand-capture, double-strand-capture, and circligase-based RNA-seq
Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.
Sex, Specimen part, Cell line, Subject
View SamplesThe goals of this study were to determine global differences in transcript expression and regulation between MM cells that are sensitive or insensitive to lovastatin-induced apoptosis. To this end, two sensitive (KMS11 and H929) and two insensitive (LP1 and SKMM1) MM cell lines treated with 20uM lovastatin or an ethanol vehicle control for 16 hours. mRNA was extracted and prepared for mRNA expression microarrays (HG-U133 Plus 2) in triplicate.
Exploiting the mevalonate pathway to distinguish statin-sensitive multiple myeloma.
Specimen part, Cell line, Treatment
View SamplesHeLa cells lacking MORC2 generated through CRISPR/Cas9-mediated gene disruption were reconstituted with either wild-type or R252W mutant MORC2, and re-repression of HUSH target genes assessed by RNA-seq Overall design: Total RNA-seq of MORC2 knockout cells, either 1) mock transduced, 2) transduced with lentiviral vector encoding wild-type MORC2 or 3) transduced with lentviral vector encoding R252W MORC2.
Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2.
Cell line, Subject
View SamplesCell purification technology combined with whole transcriptome sequencing and small molecule agonist of hematopoietic stem cell self-renewal has allowed us to identify the endothelial protein c receptor protein (EPCR) as a surface maker that defines a rare subpopulation of human cells which is highly enriched for stem cell activity in vivo. EPCR-positive cells exhibit a robust multi-lineage differentiation potential and serial reconstitution in immunocompromised mice. In culture, most if not all of the HSC activity is detected in the EPCR+ subset, arguing for the stability of this marker on the surface of cultured cells, a feature not found with more recently described markers such as CD49f. Functionally EPCR is essential for human HSC activity in vivo. Cells engineered to express low EPCR expression proliferate normally in culture but lack the ability to confer long-term reconstitution. EPCR is thus a stable marker for human HSC. Its exploitation should open new possibilities in our effort to understand the molecular bases behind HSC self-renewal. Overall design: Examining 3 cellular subsets: EPCR+, EPCRlow, EPCR- derived form CD34+CD45RA- cord blood cells after 7 day expansion in UM171
EPCR expression marks UM171-expanded CD34<sup>+</sup> cord blood stem cells.
No sample metadata fields
View SamplesRNASeq data for mPB or CB-derived CD34+ exposed to UM171 Overall design: human mobilized peripheral blood or cord blood-derived CD34(+) cells were cultured for 16 hours with vehicle (DMSO), dose response of UM171 [11.9nM, 19nM, 30.5nM, 48.8nM, 78.1nM and 125nM], SR1 [500nM] and combination of( UM171 [48.8nM]+SR1 [500nM])
UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal.
No sample metadata fields
View SamplesAnalysis of expression profiles of human pDC cell line (CAL1) compared to an immature T cell line (MOLT4)
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesThe methyltransferase G9a was found to play a role in the disease progression of a murine model of AML.
The methyltransferase G9a regulates HoxA9-dependent transcription in AML.
Cell line
View Samples