Despite the fact that clinically relevant infectious agents such as human immunodeficiency virus enter through the intestinal mucosa, the intestinal T cell response to infection remains understudied. Listeria monocytogenes (LM) has been used as a model organism for studying T cell responses and the normal route of infection for LM and a potential route for use of LM as a vaccine are through ingestion. Nevertheless, the vast majority of LM immunological studies utilize inoculation routes other than oral. Moreover in the bacterial strains used the internalin. A protein binds human E-cadherin with high affinity but poorly binds mouse E-cadherin. This receptor-ligand pairing is required for entry of LM into intestinal epithelial cells. The oral infection studies proposed here utilize a recombinant LM that expresses an internalin A protein with high affinity for mouse E-cadherin. Thus, the physiologic route and entry point of LM is recapitulated in our studies. Our preliminary studies revealed a remarkable mucosal TCR gd T cell response to oral LM infection, whose kinetics mimic an adaptive T cell response. Most importantly, this phenotypically and functionally distinct subset of mucosal TCR gd T cells are retained long-term and undergo a recall response upon challenge. The hypothesis to be tested in this proposal is that this specialized subset of putative memory TCR gd T cells is important for protection against LM infection and also regulates the long-term protective CD8 TCR ab response. This hypothesis will be tested in the following specific aims: Aim 1. To test whether a subset of TCR gd represent bona fide mucosal memory cells. A detailed kinetic, phenotypic and functional analysis of the primary and secondary TCR gd cell response to oral LM infection will be undertaken. Aim 2. To determine the requirements for mucosal TCRgd activation in response to LM infection. Here we will test the role of dendritic cells, cosfimulation and cytokines in mounting primary and secondary TCR gd cell responses. Aim 3. To visualize the mucosal TCR gd cell response to oral LM infection. The oral infection system provides an exceptional opportunity to examine the anatomy of the mucosal TCR gd cell response.
γδ T cells exhibit multifunctional and protective memory in intestinal tissues.
Sex, Age, Specimen part, Cell line
View SamplesWe demonstrate that PKA signalling drives zonal conversion within adult adrenocortical lineage in a sexually dimorphic manner. Our data establish that Prkar1a genetic ablation (leading to constitutive PKA activation) in the adult adrenocortical lineage leads to endocrine hyperactivity and accelerates adrenal cortex renewal. This results in increased zona fasciculata differentiation and final conversion into reticularis-like zone. This phenomenon relies partly on sex-dependent mechanisms of cortical renewal, on which the male androgenic milieu exerts a repressive action through induction of WNT signalling, which in turn antagonizes PKA signalling and cortical cell turnover.
PKA signaling drives reticularis differentiation and sexually dimorphic adrenal cortex renewal.
Sex, Specimen part
View SamplesEzh2 encodes the catalytic subunit of the polycomb repressive complex 2 epigenetic regulator. Its ablation in the adrenal cortex results in profound alterations of adrenal homeostasis.
Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis.
Specimen part
View SamplesImmune system homeostasis depends on signals that drive effector (like secretion of pro-inflammatory cytokines like IFNg) and regulatory (like secretion of the anti-inflammatory cytokine IL-10) functions.
The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells.
Specimen part, Subject
View SamplesRNA expression microarray analysis of prospermatogonia in 15 day post-conceptus (dpc) fetuses, a stage when they are undergoing rapid de novo DNA methylation. For comparison, we also analysed 15 dpc pachytene oogonia, 15 dpc female and male gonadal somatic cells, and adult pachytene spermatocytes.
RNA expression microarray analysis in mouse prospermatogonia: identification of candidate epigenetic modifiers.
Sex, Specimen part
View SamplesSOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We used RNA-seq to charatierize a rat chondrosarcoma (RCS) cells as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes and ChIP-seq to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Overall design: RNAs were isolated from three bioogical replicatse of rat chondrosarcoma (RCS) cells and rib samples for RNA-seq experiments.
The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis.
No sample metadata fields
View SamplesThe hair of all mammals consists of terminally differentiated cells that undergo a specialized form of apoptosis called cornification. While DNA is destroyed during cornification, the extent to which RNA is lost is unknown. Here we find that multiple types of RNA are incompletely degraded after hair shaft formation in both mouse and human. Notably, mRNAs and short regulatory microRNAs (miRNAs) are stable in the hair as far as 10 cm from the scalp. To better characterize the post-apoptotic RNAs that escape degradation in the hair, we performed sequencing (RNA-seq) on RNA isolated from hair shafts pooled from several individuals. This hair shaft RNA library, which encompasses different hair types, genders, and populations, revealed 7,193 mRNAs, 449 miRNAs and thousands of unannotated transcripts that remain in the post-apoptotic hair. A comparison of the hair shaft RNA library to that of viable keratinocytes revealed surprisingly similar patterns of gene coverage and indicates that degradation of RNA is highly inefficient during apoptosis of hair lineages. The generation of a hair shaft RNA library could be used as months of accumulated transcriptional history useful for retrospective detection of disease, drug response and environmental exposure.
The post-apoptotic fate of RNAs identified through high-throughput sequencing of human hair.
No sample metadata fields
View SamplesCD74, a Type II membrane glycoprotein and MHC class II chaperone (Ii), is normally expressed by cells associated with the immune system. CD74 also forms heterodimers with CD44 to generate receptors to macrophage migration inhibitory factor (MIF), a proinflammatory cytokine. Following targeted Cre-mediated deletion of Ikk in IkkDeltaHep mice (a strain highly susceptible to chemically-induced hepatotoxicity and hepatocarcinogenesis), CD74 is abundantly expressed by hepatocytes throughout liver acini (as detected by specific Western blots and immunohistochemical stains); it is not observed in either control IkkF/F hepatocytes or embryonic fibroblasts from Ikk-/- mice. Constitutive CD74 expression in IkkDeltaHep hepatocytes is also accompanied by significantly augmented expression of CD44 and genes associated with antigen processing and host defense. These observations suggest that IkkDeltaHep hepatocytes might directly respond to MIF signaling, accounting partly for the enhanced susceptibility of IkkDeltaHep mice to hepatotoxins and hepatocarcinogens, and also might exhibit unusual immunological properties including antigen presentation.
Targeted deletion of hepatocyte Ikkbeta confers growth advantages.
Specimen part
View SamplesThe molecular processes underlying human milk production and the effects of mastitic infection are largely unknown because of limitations in obtaining tissue samples. Determination of gene expression in normal lactating women would be a significant step towards understanding why some women display poor lactation outcomes. Here we demonstrate the utility of RNA obtained directly from human milk cells to detect mammary epithelial cell (MEC)-specific gene expression. Milk cell RNA was collected from 5 time points (24 hours pre-partum during the colostrum period, mid lactation, two involution, and during a bout of mastitis) in addition to an involution series comprising three time points. Gene expression profiles were determined by use of human Affymetrix arrays. Milk cells collected during milk production showed that the most highly expressed genes were involved in milk synthesis (eg. CEL, OLAH, FOLR1, BTN1A1, ARG2), while milk cells collected during involution showed a significant down regulation of milk synthesis genes and activation of involution associated genes (eg. STAT3, NF-kB, IRF5, IRF7). Milk cells collected during mastitic infection revealed regulation of a unique set of genes specific to this disease state, whilst maintaining regulation of milk synthesis genes. Use of conventional epithelial cell markers was used to determine the population of MECs within each sample. This paper is the first to describe the milk cell transcriptome across the human lactation cycle and during mastitic infection, providing valuable insight into gene expression of the human mammary gland.
Analysis of human breast milk cells: gene expression profiles during pregnancy, lactation, involution, and mastitic infection.
Specimen part
View Samples