Rosiglitazone (Rosi), a member of the thiazolidinedione class of drugs used to treat type 2 diabetes, activates the adipocyte-specific transcription factor peroxisome proliferator-activated receptor gamma (PPARg). This activation causes bone loss in animals and humans, at least in part due to suppression of osteoblast differentiation from marrow mesenchymal stem cells (MSC). In order to identify mechanisms by which PPARg2 suppresses osteoblastogenesis and promotes adipogenesis in MSC, we have analyzed the PPARg2 transcriptome in response to Rosi. A total of 4,252 transcriptional changes resulted when Rosi (1 uM) was applied to the U-33 marrow stromal cell line, stably transfected with PPARg2 (U-33/g2), as compared to non-induced U-33/g2 cells. Differences between U-33/g2 and U-33 cells stably transfected with empty vector (U-33/c) comprised 7,928 transcriptional changes, independent of Rosi. Cell type-, time- and treatment-specific gene clustering uncovered distinct patterns of PPARg2 transcriptional control of MSC lineage commitment. The earliest changes accompanying Rosi activation of PPARg2 included adjustments in morphogenesis, Wnt signaling, and immune responses, as well as sustained induction of lipid metabolism. Expression signatures influenced by longer exposure to Rosi provided evidence for distinct mechanisms governing the repression of osteogenesis and stimulation of adipogenesis. Our results suggest interactions that could lead to the identification of a master regulatory scheme controlling osteoblast differentiation.
PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells.
Compound, Time
View SamplesAppropriate nutrition during early development is essential for optimal bone mass accretion; however, linkage between early nutrition, childhood bone mass and prevention of bone loss later in life has not been extensively studied. In this report, we have demonstrated several fundamental issues in the field. 1) A significant prevention of ovariectomy (OVX) -induced bone loss from adult rats can occur with only 14 days consumption of a blueberry-containing diet immediately prior to puberty. 2) The molecular mechanisms underlying these effects involve increased myosin production and preserved a shuttle for transcription factors such as Runx2 from cytoplasm to nucleolus which stimulates osteoblast differentiation and reduces mesenchymal stromal cell senescence. 3) The effects of blueberry diet on preserving fidelity of osteoblast differentiation also overcome reduced osteoblast differentiation and activity due to OVX-induced degradation of collagen matrix.
Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats.
Sex, Specimen part
View SamplesThe oncogenic mechanisms and tumour biology underpinning Clear Cell Sarcoma of Kidney (CCSK), the second commonest paediatric renal malignancy, are poorly understood and currently therapy depends heavily on Doxorubicin with cardiotoxic side-effects. Previously, we characterised the balanced t(10;17)(q22;p13) chromosomal translocation, identified at that time as the only recurrent genetic aberration in CCSK. This translocation results in an in-frame fusion of the YWHAE (encoding 14-3-3e) and NUTM2 genes, with a somatic incidence of 12%. Clinico-pathological features of that cohort suggested that this aberration might be associated with higher stage and grade disease. Since no primary CCSK cell line exists, we generated various stably transfected cell lines containing doxycycline-inducible HA-tagged-YWHAE-NUTM2, in order to study the effect of expressing this transcript. 14-3-3e-NUTM2-expressing cells exhibited significantly greater cell migration compared to mock-treated controls. Gene and protein expression studies conducted in parallel on this model system suggested dysregulation of signalling pathways as a basis to the migration changes. Importantly, by blocking these signalling pathways using anti-EGFR, anti-IGF1R and anti-PDGFa neutralising antibodies, the migratory advantage conferred by transcript expression was abrogated. These results support 14-3-3e-NUTM2 expression as a contributor to CCSK tumorigenesis and provide avenues for the exploration of novel therapeutic approaches in CCSK.
Dysregulated mitogen-activated protein kinase signalling as an oncogenic basis for clear cell sarcoma of the kidney.
Disease, Cell line
View SamplesHepatocyte IKK deficiency worsens HCFD-induced NASH in male but not female mice.
Gender difference in NASH susceptibility: Roles of hepatocyte Ikkβ and Sult1e1.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2.
Specimen part, Cell line
View SamplesE protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity.
ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2.
Specimen part
View SamplesBlockades in hematopoiesis deprive the host of vital blood cells and frequently cause leukemia. Here we show that inactivation of mTORC1 in hematopoietic stem cells by deletion of Raptor unmasked a cell type, hereby called myelolymphoblastic innate cell (MLIC) based on unique gene expression signature, cell surface markers, morphology and functions. The MLICs are CD11b(+)Gr-1(-)B7-H1(high)F4/80(low) and have morphology of lymphoblasts with active Ig loci but no gene rearrangement. Within weeks of Raptor deletion, the MLICs account for nearly 50% of bone marrow cells and are found throughout both the lymphoid and non-lymphoid organs. Nevertheless, the MLICs are not malignant as they undergo very limited proliferation in vivo. Importantly, the MLICs broadly express pattern-recognition receptors and produce large amounts of inflammatory cytokines in response to all TLR ligands tested, rendering the host highly susceptible to pathogen-associated molecular patterns. Our data suggest that hematopoietic cell-intrinsic mTORC1 prevents development of self-destructive innate immune attack by suppressing generation of MLICs. Overall design: Raptor F/F mice were crossed with Mx1-Cre mice for more than 2 generations to get Raptor F/F (Ctrl) and Raptor F/F, Mx1-Cre (cKO) mice. Sex-matched 6-8 weeks old Ctrl mice and cKO mice were treated with polyinosinic: polycytidylic acid (pIpC) every other day for consecutive 7 times by intra-peritoneal (i.p.) injection to induce Cre expression and Raptor deletion in mouse hematopoietic system. Raptor mice were sacrificed 2-3 weeks after the last injection of pIpC. Whole BM cells from Raptor Ctrl mice (n=3) and FACS-sorted CD11b(+)Gr-1(-) BM MLICs from Raptor cKO mice (n=3) were used for RNA isolation and subsequent cDNA libraries construction. mRNA profiles of Ctrl-WBM and cKO-MLIC were examined by RNA-sequencing, in triplicate, using Illumina HiSeq 2000.
A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice.
No sample metadata fields
View SamplesWe performed a phase I/II, randomized, double-blind, placebo-controlled dose-escalation study to examine the safety, immunogenicity, and biological effects of active immunization with interferon alpha-Kinoid (IFN-K) in systemic lupus erythematosus (SLE) patients. Women 18-50 years of age with mild to moderate SLE were immunized with three (n=10) or four doses (n=9) of 30, 60, 120, 240 microgram IFN-K or saline.
Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Race
View SamplesInterferon-alpha Kinoid (IFN-K) is a therapeutic vaccine composed of IFN-alpha2b coupled to a carrier protein. In a phase I/II placebo-controlled trial, we observed that IFN-K significantly decreases the IFN gene signature in whole blood RNA samples from SLE patients (see GSE39088). Here, we analyzed extended follow-up data from IFN-K-treated patients, in terms of persistence of neutralizing anti-IFN Abs, gene expression profiling and safety.
Interferon α kinoid induces neutralizing anti-interferon α antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon α kinoid phase I/II study.
Sex, Specimen part, Disease, Disease stage, Subject, Time
View SamplesPatients with systemic lupus erythematosus are characterized by the spontaneous over-expression of interferon(IFN)-induced genes in peripheral blood RNA samples. In the present study, we wanted to study the evolution of the IFN gene signature in the peripheral blood of patients with lupus nephritis, before and after initiation of immunosuppressive therapy.
Interferon α kinoid induces neutralizing anti-interferon α antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon α kinoid phase I/II study.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View Samples