Transcriptomic response to metfromin treatment.
Genomic Characterization of Metformin Hepatic Response.
Sex, Age, Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.
No sample metadata fields
View SamplesFollicular Lymphomas are blood tumors growing as spheres in patients. Before this study, there was no experimental model mimicking the 3D organization of these in vivo tumors. We develop such a model, called MALC, and observed a progressive enrichment in quiescent cells in these with time of culture; these cells were sorted, as their cycling counterparts, and their transcriptomes were compared. We used microarrays to detail the differential global gene expression profile between quiescent and cycling cells isolated from MALC.
Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.
No sample metadata fields
View SamplesFollicular Lymphomas are blood tumors growing as spheres in patients. Before this study, there was no experimental model mimicking the 3D organization of these in vivo tumors. We develop such a model, called MALC, and performed a pan-genomic comparative analysis between MALC and classical suspension cultures. We used microarrays to detail the global gene expression profile induced by aggregated growth of lymphoma cells.
Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.
No sample metadata fields
View SamplesExhaustion markers are expressed by T lymphocytes in Follicular Lymphoma (FL). Through these, TIM-3 has been recently identified as a poor pronostic factor when expressed by FL CD4+ T cells.
Impaired functional responses in follicular lymphoma CD8<sup>+</sup>TIM-3<sup>+</sup> T lymphocytes following TCR engagement.
Specimen part, Subject
View SamplesRetinoic acid receptors (RARs) , and are key regulators of embryonic development. Hematopoietic differentiation is regulated by RAR, and several types of leukemia show aberrant RAR activity. We demonstrate that RAR plays an important role in cellular memory and imprinting by regulating the CpG methylation status of specific promoter regions.
Epigenetic regulation by RARα maintains ligand-independent transcriptional activity.
Cell line, Treatment
View SamplesThe t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene, which functions as a transcription factor.
The TEL-AML1 fusion protein of acute lymphoblastic leukemia modulates IRF3 activity during early B-cell differentiation.
Cell line, Treatment
View SamplesIntegrins have long been known to have a role in adhesion of neural stem cells within the neuroepithelium, but little is known about their role in regulating stem cell behaviour through signalling. We aimed to investigate the effect of integrin-beta 1 signalling (itgb1) on these cells by transfection of a constitutively active itgb1. This creates a heterogenous pattern of expression allowing the study of cell-autonomous and non-cell autonomous effects.
Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin.
Specimen part
View SamplesRetinoic acid receptors (RARs) , , and heterodimerize with Retinoid X receptors (RXR) , , and and bind the cis-acting response elements known as RAREs to execute the biological functions of retinoic acid during mammalian development. RAR mediates the anti-proliferative and apoptotic effects of retinoids in certain tissues and cancer cells, such as melanoma and neuroblastoma cells. Furthermore, ablation of RAR enhanced the tumor incidence of Ras transformed keratinocytes and was associated with resistance to retinoid mediated growth arrest and apoptosis.
RARγ is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells.
Specimen part, Treatment, Time
View SamplesBackground & Aims Hepatocytes differentiated from human embryonic stem cells (hESCs) have the potential to overcome the shortage of primary hepatocytes for clinical use and drug development. Many strategies for this process have been reported, but the functionality of the resulting cells is incomplete. We hypothesize that the functionality of hPSC-derived hepatocytes might be improved by making the differentiation method more similar to normal in vivo hepatic development. Methods We tested combinations of growth factors and small molecules targeting candidate signaling pathways culled from the literature to identify optimal conditions for differentiation of hESCs to hepatocytes, using qRT-PCR for stage-specific markers to identify the best conditions. Immunocytochemistry was then used to validate the selected conditions. Finally, induction of expression of metabolic enzymes in terminally differentiated cells was used to assess the functionality of the hESC-derived hepatocytes. Results Optimal differentiation of hESCs was attained using a 5-stage protocol. After initial induction of definitive endoderm (stage 1), we showed that inhibition of the WNT/ß-catenin pathway during the 2nd and 3rd stages of differentiation was required to specify first posterior foregut, and then hepatic gut cells. In contrast, during the 4th stage of differentiation, we found that activation of the WNT/ß-catenin pathway allowed generation of proliferative bipotent hepatoblasts, which then were efficiently differentiated into hepatocytes in the 5th stage by dual inhibition of TGF-ß and NOTCH signaling. Conclusion Here, we show that stage-specific regulation of the WNT/ß-catenin pathway results in improved differentiation of hESCs to functional hepatocytes. Overall design: mRNA profiles of undifferentiated, definitive endoderm, stage 2-5 cell ines were generated by deep sequencing, in duplicate, as well as five liver samples.
Stage-specific regulation of the WNT/β-catenin pathway enhances differentiation of hESCs into hepatocytes.
Specimen part, Subject
View Samples